
Master Arbeit im Studiengang Informatik

Optimal Virtualized In-Network Processing
with Applications to Aggregation and Multicast

Matthias Johannes Rost
mrost@inet.tu-berlin.de

Matrikelnummer: 338304

21. Januar 2014

Gutachter
Prof. Anja Feldmann, Ph.D., Technische Universität Berlin

Prof. Dr. Andreas Bley, Universität Kassel

Betreuer
Dr. Stefan Schmid, Technische Universität Berlin

Eidesstattliche Versicherung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne
unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und
Hilfsmittel angefertigt habe.

Berlin, den 21. Januar 2014

Unterschrift

Abstract

Virtualization has become a crucial ingredient in efficiently utilizing and sharing networks.
New concepts as Networks Functions Virtualization envision the placement of computational
resources, known as universal nodes, throughout ISP networks, such that services can be de-
ployed flexibly on top of these nodes. In data centers such computational ressources are readily
available at middleboxes or can be spawned as Virtual Machines.

This thesis considers how the communication services of multicast and aggregation can be
optimally deployed in virtualized environments. As both these communication schemes rely
heavily on in-network processing to e.g. filter, aggregate or duplicate data, the question arises
where to place in-network processing functionality and how to route data. As installing pro-
cessing functionality either comes at monetary costs (e.g. in ISP networks) or at opportunistic
costs due to limited computational resources (e.g. in data centers), we consider the problem
of jointly minimizing the number of processing locations and the bandwidth.

Interestingly, the corresponding combinatorial optimization problem has not been studied
before and is introduced in this thesis as the Constrained Virtual Steiner Arborescence Problem
(CVSAP). Despite the novelty of the problem, this thesis provides a comprehensive study of
CVSAP comprising results of both theoretical and practical significance:

1. The computational complexity of CVSAP and weaker variants is studied and the inap-
proximability of CVSAP (unless P “ NP holds) is established and three approximation
algorithms for variants are obtained.

2. Based on the computational hardness of CVSAP, exact algorithms are studied, yielding
a multi-commodity and a single-commodity flow Integer Programming formulation. To-
gether with a novel flow decomposition scheme the single-flow formulation yields the
VirtuCast algorithm which represents the main theoretical contribution of this thesis.

3. While the inapproximability result for CVSAP does not allow for deriving approxima-
tion algorithms, several linear heuristics and a purely combinatorial heuristic are devel-
oped.

4. Bridging theoretical and practical considerations, all presented algorithms for CVSAP
are implemented and studied in an extensive computational evaluation on different net-
work topologies. The results show that the VirtuCast algorithm - paired with the de-
veloped heuristics - can be applied to solve realistically sized instances with more than
thousand nodes to within 6% of optimality.

Zusammenfassung
Virtualisierung spielt eine zentrale Rolle, um Ressourcen in Netzwerken effizient zu benutzen
und zu teilen. Neuartige Konzepte wie zum Beispiel ‘Networks Functions Virtualization’
sehen vor, universelle Rechenknoten in den Netzwerken von Internet Service Providern zu
platzieren, um Dienste flexibel unter Verwendung dieser bereitstellen zu können. Schon
heutzutage existieren in Rechenzentren solche Rechenkapazitäten in der Form von ‘Middle-
boxes’ bzw. können als virtuelle Maschinen erzeugt werden.

Im Lichte dieser Entwicklung befasst sich diese Masterarbeit mit der Frage wie Mehrpunkt-
verbindungsdienste und Aggregationsdienste in virtualisierten Netzwerken optimal bereit-
gestellt werden können. Sowohl Mehrpunkt verbindungsdienste wie auch Aggregations- dien-
ste basieren auf der Fähigkeit innerhalb des Netzwerks Datenströme zu filtern, zu aggregieren
und zu duplizieren. Dies wirft die Frage auf, auf welchen Netzwerkknoten die Funktionalität
zur Verarbeitung von Datenströmen platziert werden soll und entlang welcher Wege Daten
zwischen diesen ausgetauscht werden sollen. Da die Installation von Datenstromverarbeitungs-
fähigkeiten auf Netzwerkknoten entweder monetäre Kosten oder opportune Kosten, z.B. durch
die Verwendung von begrenzten Rechenkapazitäten, nach sich zieht, wird in dieser Arbeit die
gleichzeitige Minimierung der Anzahl von Netzwerkknoten, welche Datenströme verarbeiten,
und der Verwendung von Bandbreite zum Kommunikationsaustausch angestrebt.

Interessanterweise wurde dieses Problem im Rahmen der kombinatorischen Optimierung
noch nicht untersucht und wird folglicherweise in dieser Arbeit als ‘Constrained Virtual Steiner
Arborescence Problem’ (CVSAP) eingeführt. Entgegen der Tatsache, dass diese Masterarbeit
eben dieses Problem zum ersten Mal definiert, enthält diese Arbeit eine umfassende Unter-
suchung von CVSAP, mit den folgenden praxisrelevanten als auch theoretischen Resultaten:

1. Die zugrundeliegende Komplexität von CVSAP und abgeschwächten Varianten wird
untersucht und die Nichtapproximierbarkeit von CVSAP, sofern nicht P “ NP gilt, be-
wiesen. Weiterhin werden Approximationsalgorithmen für drei abgeschwächte Varian-
ten aufgezeigt.

2. Bedingt durch die Komplexität von CVSAP werden im Rahmen dieser Arbeit exakte
Lösungsansätze unter Verwendung von ganzzahlig linearer Optimierung entwickelt. Ins-
besondere wird CVSAP sowohl als ein Mehrgüter-Flussproblem, sowie auch als ein
Eingüter-Flussproblem formuliert. Zusammen mit einem neuartigen Flusszerlegungs-
algorithmus wird die Eingüter-Fluss-Formulierung verwandt, um den VirtuCast Algo-
rithmus herzuleiten. Dieser stellt das theoretische Herzstück dieser Arbeit dar.

3. Bedingt durch das Nichtapproximierbarkeitsresultat für CVSAP, werden anstatt von Ap-
proximationsalgorithmen mehrere lineare wie auch kombinatorische Heuristiken ent-
wickelt.

4. Alle im Rahmen dieser Arbeit entwickelten Algorithmen wurden implementiert und
werden einer umfassenden Untersuchung auf verschiedenen Topologien unterzogen.
Die Auswertung dieser Untersuchung zeigt, dass der VirtuCast Algorithmus - zusam-
men mit den entwickelten Heuristiken - genutzt werden kann, um CVSAP auf realistis-
chen Problemgrößen mit mehreren tausend Knoten bis auf einen Faktor von 6% optimal
lösen zu können.

Contents

1. Introduction 1
1.1. Model Outline . 3
1.2. Applications . 4
1.3. Overview . 7
1.4. Contribution . 7

I. Theory of CVSAP 9

2. The Constrained Virtual Steiner Arborescence Problem › 10
2.1. Notation . 10
2.2. Definition of the Constrained Virtual Steiner Arborescence Problem 11
2.3. Inapproximability of CVSAP . 14
2.4. Variants of CVSAP . 14

3. Approximation of CVSAP Variants 18
3.1. 8-Approximation of VSTP via CFLP . 19
3.2. Equivalence of VSAP and SAP . 23
3.3. Approximation of NVSTP via DNSTP . 27

II. Exact Algorithms for CVSAP 33

4. A Multi-Commodity Flow Formulation › 34
4.1. Notation . 34
4.2. The MIP Model . 34
4.3. Implementation . 36

5. VirtuCast Algorithm 37
5.1. The IP Model . 37
5.2. Flow Decomposition . 39
5.3. Runtime Analysis for Decompose . 45
5.4. Implementation . 46

III. Heuristics for CVSAP 49

6. Overview and Common Algorithms 50
6.1. Employed Known Algorithms and Definitions 50
6.2. Local Search Procedure PruneSteinerNodes › 53

7. Combinatorial Heuristic GreedySelect 55
7.1. Synopsis of Algorithm GreedySelect . 55
7.2. Runtime of Algorithm GreedySelect . 57

8. LP-Based Heuristics 59
8.1. Heuristic FlowDecoRound › . 59
8.2. Algorithm PartialDecompose . 62
8.3. Algorithm Virtual Capacitated Prim Connect 63
8.4. Abstract Interface to LP Solver . 65
8.5. Greedy Diving Heuristics . 66
8.6. Multiple Shots Heuristics . 69
8.7. Runtime Considerations . 71

IV. Computational Evaluation 72

9. Outline of the Computational Evaluation 73
9.1. Notation & Measures . 74
9.2. General Computational Setup . 74

10.Topologies 75
10.1. Selected Topologies . 75
10.2. Generation Parameters . 76
10.3. Fat Tree . 77
10.4. 3D Torus . 77
10.5. IGen . 78

11.Separation & Branching Parameters 79
11.1. Considered Parameters . 79
11.2. General Methodoloy . 80
11.3. Initial Parameter Validation . 80
11.4. Final Parameter Validation . 88
11.5. Final Separation & Branching Parameters 90

12.Performance of LP-Based Heuristics 100
12.1. Methodology . 100
12.2. Computational Setup . 101
12.3. Overview of Results . 102
12.4. Detailed Topology-Dependent Analysis . 104

13.Performance of the Final VirtuCast Solver 117

14.Evaluation of alternative Algorithms 119
14.1. GreedySelect . 119
14.2. Performance of Formulation A-CVSAP-MCF 120
14.3. VirtuCast with SCIP’s Heuristics . 120

V. Conclusion 125

15.Related Work 126
15.1. Applicability of CVSAP . 126
15.2. Related Theoretical Problems . 127
15.3. Integer Programming Formulations . 127

16.Summary of Results & Future Work 128

Bibliography 129

1. Introduction
Virtualization is one of the key enablers for innovating networking. Virtualized data centers
have e.g. allowed for the global rise of cloud computing and the fast deployment of global web
services. As network virtualization allows for resource isolation and thereby enables quality
of service guarantees, current research considers how virtualization technology can be applied
to ISP and backbone networks to overcome the internet impasse [And+05]. While link vir-
tualization was already allowed for by using IP over MPLS, the idea of Network Functions
Virtualization (NFV) currently receives much attention [Eur12]. NFV aims at distributing gen-
eral computing resources in the network and to deploy services on these so called universal
nodes where necessary in a flexible fashion.

Based on the new flexibility offered by network virtualization, this thesis considers how two
basic fundamental communivation services can be deployed in virtualized networks, namely
multicasting and aggregation. In the well-known multicast communication scheme, a single
sender needs to forward (the same) data towards multiple receivers. As implementing multi-
cast via independent communication channels from the sender towards all receivers (unicast)
does not scale, existing multicasting technologies rely on local in-network processing on e.g.
routers, such that a data stream is duplicated only where necessary. Efficient multicasting is
essential for a wide range of applications, e.g. video and audio conferencing, optical multicast
for IPTV and synchronization of replicated services.

In contrast to multicasting, the aggregation communication scheme asks for forwarding data
of multiple senders towards a single receiver. Assuming that the single receiver shall compute
an associative and commutative function, processing nodes that receive multiple data streams
can compute intermediate results and only forward the result. This again allows for reducing
the bandwidth needed overall as well as spreading the computational load accross multiple
nodes. The general aggregation communication scheme is of importance in several different
contexts. It can be applied directly to sensor networks where values or even messages can
be aggregated to reduce e.g. energy consuption but may also be used in data centers and ISP
networks. In data centers, MapReduce is often times used to distribute big data applications
across many nodes. Aggregation can here be used during the shuffle phase to locally reduce
incoming data. Considering ISP networks, a common task is to perform network analytics to
e.g. trace errorneous configurations or adapt load balancing. As the amount of data transferred
via the network is non-negligible, aggregation could be used on processing nodes to filter
unrelevant information.

To implement multicasting and aggregation efficiently and in a scalable fashion, in-network
processing is essential. However, while allowing for drastically reducing the consumed band-
width, it also comes at a certain cost, which may be either monetary or opportunistic. The
concept of NFV enabled ISP networks envisions universal nodes that are shared across multi-
ple services, such that deploying each service on all universal nodes is not feasible. Therefore,

1

using a certain universal node comes at the opportunistic cost, that other services may not use
this node. Another significant type of opportunistic cost is the overall scalability of the de-
ployed service. By using in-network processing functionality on all nodes, bandwidth used for
the application can be reduced to a minimum. However, as most applications require stateful
communication, using in-network processing on all nodes may impede scalability due to the
overhead associated with keeping state. Lastly, real monetary costs arise e.g. when deploy-
ing multicast enabled optical routers or universal nodes in ISP networks, and in general for
management and service of the hardware.

Besides costs for installing in-network processing functionality, furthermore capacities on
processing nodes as well as on links will are considered. The node capacities of processing
nodes will effectively upper bound the number of streams a processing node can process, such
that in the multicasting scenario an incoming stream cannot be duplicated and forwarded to
arbitrary many recipients. In the aggregation scheme, the node capacities will limit the number
of streams a processing node can merge. While the processing nodes’ capacacities can be used
to model computational limitations, the usage of link capacities is necessary in the context of
virtualized networks to safeguard resource isolation.

Despite its importance, the underlying optimization problem that asks for trading-off band-
width and the cost for deploying or using in-network processing functionality while respecting
node and link capacities, was not studied before. Indeed, this thesis introduces the first cor-
rect and concise graph-theoretic definition of the Constrained Virtual Steiner Arborescence
Problem (CVSAP) 1.

In the following the model proposed in this thesis will be discussed in more depth. In
Section 1.2 we outline possible applications for our novel model. Lastly, Sections 1.3 and 1.4
give an overview over the thesis and its contribution, respectively

1Oliviera and Pardalos consider a similar problem in a series of works, the latest being [OP11]. However, their
definition is inherently flawed as it relies on an incorrect Integer Programming Formulation [RS13b].

(a) Aggregation scenario (b) Unicast solution (c) Steiner arborescence

Figure 1.1.: An aggregation example on a 5 ˆ 5 grid. Senders are depicted as triangles while
the receiver is depicted as star. Processing locations are pictured as squares or, in case that a
processing location is collocated with a sender, pentagons. In Figure (b), equally colored and
dashed edges represent paths, originating at the node with the same color.

2

1.1. Model Outline
To illustrate our model, consider the aggregation example depicted in Figure 1.1a. Given is
a bi-directed 5 ˆ 5 grids, where triangles represent senders and the star represents the single
receiver. The black dots represent further nodes, which are neither receiver nor sender but on
which processing functionality may be placed to merge multiple incoming data streams. If no
such functionality is placed, then the node must forward all incoming data streams. The task
is to connect all senders to the single receiver.

Figure 1.1b presents a simple unicast solution where each sender forwards its information
to the receiver directly, such that no processing functionality needs to be installed at all. Such
a solution can be computed using known shortest paths algorithms, or minimum cost flow
algorithms if capacities are given. Note that the solution uses 41 edges overall.

In contrast, when processing functionality can be placed at all nodes and the task is to min-
imize the bandwidth usage, an optimal solution can be computed using Steiner arborescence
algorithms (see Figure 1.1c). Note that this solution uses 16 edges and 9 processing nodes.

Interestingly, the question of how to trade-off bandwidth usage and the cost of installing
processing functionality was not studied in the context of combinatorial optimization before.
Thus, when searching for optimal solutions to either the multicasting or aggregation problem,
one could only activate in-network processing at all nodes or deactivate its usage globally. The
main contribution therefore lies in answering the following questions:

1. Which structure do solutions have where in-network processing is only enabled at a
subset of nodes?

2. How can such solutions be computed to optimize the overall cost, consisting of costs for
bandwidth usage and installing processing nodes?

To outline the structure of solutions we search for, consider the solution presented in Fig-
ure 1.2a. In this solution the senders either connect to the receiver directly or to one of the
two processing nodes. The upper processing node then forwards its aggregated result towards
the lower processing node, which in turn sends its aggregated result towards the receiver. We

(a) Virtual arborescence (b) Paths of virtual arborescence

Figure 1.2.: Virtual arborescence solution using only 26 edges and 2 processing nodes.

3

denote the solution depicted in Figure 1.2a as virtual arborescence, as edges in this tree corre-
spond to paths in the underlying network (see Figure 1.2b). Note that this solution only uses
2 processing nodes instead of 9 with respect to the Steiner arborescence solution and reduces
the number of edges with respect to the unicast solution from 41 to 26. Furthermore, note that
while the unicast solution was a directed acyclic graph and the Steiner arborescence solution
was an arborescence, the paths of the virtual arborescence solution actually contain cycles.

Given the notion of virtual arborescences, capacity constraints on processing nodes and
edges can be easily modeled. The capacity of processing nodes will effectively limit the
degree of activated processing nodes in the virtual arborescence and the links’ capacities are
enforced by summing up the number underlying paths using an edge (cf. Figure 1.2b).

In the next section, multicasting and aggregation applications will be discussed, to which
such virtual solutions will be of importance to.

1.2. Applications
In this section applications are discussed which are sensitive to the trade-off between band-
width usage and costs for installing processing functionality and therefore motivate the novel
approach presented in this thesis. Even though virtualization technologies like software-
defined networking and the concept of network functions virtualization are prominent rep-
resentatives of how virtualized multicast and aggregation communication services might be
implemented upon [CB10], our approach has applications in several very different network-
ing contexts, such as backbone, ISP, sensor and data center networks.

Note that all applications presented henceforth require link capacities to be obeyed as other-
wise a distinct service degradation would be the consequence. Therefore, only the importance
of incorporating processing nodes’ capacities to accurately model the applications will be dis-
cussed.

1.2.1. Multicast Communication Scheme
Overlay / Virtual Networks

The multicast communication scheme, whose task it is to distribute a single data item to mul-
tiple receiver, is widely used throughout the networking literature as it is a generalization of
broadcasting (see e.g. [HHR13] for applications to content-addressable networks). It is there-
fore hardly surprising, that Shi already proposed in 2001 to consider virtual multicast trees
to improve scalability of multicasting in the general context of overlay networks [Shi01]. As
overlay networks generally operate at the application layer (with respect to the ISO/OSI layer
scheme), the paths that are taken to connect nodes cannot be controlled by the user. However,
by utilizing e.g. software-defined networking inside a data-center the principle of overlay
networks can be generalized to virtual networks.

In the context of overlay and virtual networks, the consideration of processing nodes’ capac-
ities is of upmost importance, as processing nodes are not customly designed to e.g. multiplex
an incoming stream on several ports without experiencing a certain delay or overhead.

4

Optical Multicast

A more specific application lies in the distribution of e.g. IPTV over optical backbones us-
ing technologies as Synchronous Digital Hierarchy (SDH) and reconfigurable optical add /
drop multiplexer (ROADM) [Her+07]. ROADMs are used to inject or extract information to
or from a ‘wavelength’ such that the information can be distributed to the access network
over e.g. ethernet. In the context of our in-network processing terminology, processing nodes
would need to represent ROADMs, such that flows can be duplicated and destined to other
destinations seamlessly. Finding the best locations for these expensive devices is an important
network design problem [Hu+04]. Furthermore, dropping ‘packets’ at ROADMs and ‘split-
ting’ a wavelength induces a distinct power loss of the signal [Rou03]. Therefore, such optical
multicast enabled routers are only able to forward the stream towards a limited number of
recipients. This necessitates the consideration of capacities for processing nodes.

Geo-Replication of Services / Caching

Another important application stems from the current trend in geo-replication of services and
cache placement. In this context the general task is to distribute copies of data throughout the
network to balance load across servers and to reduce e.g. the users’ latency of accessing for
example video streams [Nar+13]. The relation to the multicasting communication scheme was
already established by Oliveira and Pardalos [OP11], who defined the Flow Streaming Cache
Placement Problem (FSCPP). In the FSCPP processing nodes represent caches connected in
an arbitrary hierarchy and receivers are users accessing content. Even though they generally
consider a similar problem, their problem definition is flawed [RS13b] and only the restrictive
model is considered, which does not consider edge costs.

As in geo-replication scenarios the amount of transferred data is possibly very high and a
tight synchronization of the sending nodes with its recipients is necessary, processing node ca-
pacities need to be taken into consideration. We furthermore note that by limiting the number
of recipients, a faster fail-over might be possible, in case the sender fails.

1.2.2. Aggregation Communication Scheme
The aggregation communication scheme similarly has many different applications ranging
over different kinds of networks and employing different (virtualization) technologies. As the
problem formulation presented in this thesis allows for arbitrary hierarchies of aggregation, it
fully applies only to tasks where a commutative and associative function needs to computed.
This is for example the case in sensor networks and applies to some extent also to big data
applications.

Nevertheless, by limiting the number of incoming streams that a processing node can ag-
gregate, the presented model might be applicable in other contexts as well.

Sensor Networks

In the context of sensor networks, an important task is to minimize the energy consump-
tion. As most energy is consumed during radio communication, models have been proposed

5

in which multiple messages are first collected and then sent consecutively to minimize the
time the radio has to be enabled [KEW02]. Furthermore, when computing a commutative and
associate function on measurements originating at sensor nodes, the aggregation scheme we
propose can be directly adopted [DCX03]. The objective to minimize both bandwidth usage
and the cost of installing processing nodes applies to both these applications. In the first case
processing enabled sensor nodes might need to be equipped with more storage, thereby in-
creasing their hardware cost. Secondly, as sensor nodes are distributed systems which are
inherently subject to external interferences, using to many processing nodes might reduce the
system’s scalability due to the overhead necessary to (re-)structure the virtual aggregation
trees upon failures.

By introducing processing node capacities, the limited computational power of sensor nodes
can be adequately modeled.

Big Data Applications

Big data applications make frequent use of aggregation and filtering, such that the question
arises where to place such functionality. The authors of [Cos+12] propose for example a
direct-interconnect network topology called Camdoop for executing MapReduce tasks. Using
this network topology, during the shuffle phase intermediate results are locally merged to
reduce the consumed bandwidth. The authors specifically take commutative and associative
functions into account and argue that this approach can still significantly reduce traffic, even
when the reduce function is not commutative and associative.

Therefore, our approach could e.g. be applied when considering data centers that provide
MapReduce-as-a-Service [WS13], where MapReduce jobs can be spawned by customers and
the provider could try to place aggregation functionality within the network to reduce link
load. Considering such scenarios is motivated by the common oversubscription of links by
factors of up to 1:5 [BH09]. As aggregating MapReduce outputs at intermediate nodes comes
at the price of installing further virtual machines or processes, the trade-off between traffic
and the additional usage of computational power needs to be considered.

Network Analytics

Lastly, the aggregation communication scheme might also be applicable to the management
of ISP networks. The authors of [Cra+03] present the Gigascope stream database that was
deployed throughout the AT&T network in 2003 to allow for stream based network analysis,
to e.g. trace errorneous configurations and unexpected events. Using Gigascope, the user can
define (sources of) information and relation between them in an SQL-like fashion to contin-
uously query the global network state. Assuming the ISP’s support of NFV and a virtualized
transport layer, the aggregation scheme could be used to merge data streams and discard in-
formation of no interest near the sources of information, reducing the traffic significantly.
Again the motivation for not using in-network processing at each possible location, are both
scalability of the system and the limited computational resources in the network.

Note that in this scenario, the ability to merge multiple incoming data streams into a single
one depends entirely on the semantics of the query. However, by introducing capacities of

6

processing nodes, the aggregation factor is limited at each node.

1.3. Overview
This thesis is subdivided into five parts. Part I introduces the Constrained Virtual Steiner
Abrorescence Problem (CVSAP) together with a set of weaker variants. The computational
complexity of CVSAP is studied and its inapproximability is shown. Based upon relationships
among weaker variants and well-known optimization problems, approximation algorithms are
obtained for three of the five variants.

In Part II two different Integer Programming (IP) formulations to solve CVSAP to optimal-
ity are presented. While the first one uses a multi-commodity flow formulation to represent
paths explicitly, a single-commodity flow formulation is presented that abstracts from the ori-
gin and the destination of flows. Based on a novel decomposition scheme, the correctness
of the single-commodity formulation is established, yielding the VirtuCast algorithm to solve
CVSAP.

Part III introduces a combinatorial as well as multiple linear heuristics for CVSAP which
are employed as primal heuristics within our VirtuCast algorithm. The polynomial runtime of
the heuristics is proven, thereby complementing the development of the exact, non-polynomial
VirtuCast algorithm.

Part IV presents an extensive computational study. Due to the novelty of CVSAP and its
wide range of applications, the performance of all presented algorithms is computationally
studied on three distinct topologies. For each topology 75 instances are considered, varying
both in size, cost and capacity distributions.

This thesis is concluded by summarizing the obtained results and discussing related and
future work in Part V.

1.4. Contribution
This thesis initiates the study of the Constrained Virtual Steiner Arborescence Problem, which
models many aggregation and multicasting related applications in virtualized networks. To the
author’s knowledge, no equally general model has been considered so far, and we give the first
concise graph-theoretic definition. By showing the inapproximability of CVSAP (unless P “
NP) and by obtaining polynomial reductions to known optimization problems for variants
of CVSAP, the computational complexity of CVSAP is studied to a great extent, yielding
approximation algorithms for three of 5 variants.

The theoretical discussion of the computational complexity is complemented by the in-
troduction of two exact Integer Programming formulations and four types of heuristics for
CVSAP. Most notably, we prove the correctness of the single-commodity flow formulation
by devising a novel flow decomposition algorithm which resolves circularities in polynomial
time. This constructive proof does not only allow us to derive the exact VirtuCast algorithm,
but also enables the usage of its compact linear relaxation in Linear Programming (LP) based
heuristics.

7

Our extensive computational study, containing more than 3000 experiments and amounting
to more than 100 days of wallclock runtime, establishes the following results underlining our
theoretical contributions:

1. The naive multi-commodity flow formulation cannot be used to solve (realistically)
sized instances within reasonable time: on some instances not even the initial (root)
relaxation could be computed within one hour. If dual bounds can be established, these
are substantially worse than the ones established by utilizing the VirtuCast algorithm.

2. The VirtuCast algorithm, which relies on the novel single-commodity flow formulation,
generates high quality dual bounds within minutes. Based on the compactness of the
single-commodity formulation, linear relaxations can be computed quickly, enabling
the development of LP-based heuristics.

3. The (linear) heuristics proposed in this thesis are highly effective in finding solutions.
A clear trade-off between the different heuristics’ runtime and the quality of solutions
is established. Therefore, depending on the applications’ temporal restrictions to find a
solution for a CVSAP instance, an appropriate heuristic can be selected.

4. By coupling the VirtuCast algorithm with the LP-based heuristics, an highly effective
solver for CVSAP is obtained, which obtains solutions for all considered instances of
less than 6% of optimality within one hour and achieves a median objective gap of 1.5%
on two of the three considered topologies.

Previously Published Results
Some parts of this thesis have been published as joint work with Stefan Schmid in the pro-
ceedings of the 17th International Conference On Principles Of Distributed Systems [RS13c]
as well as in an extended technical report on arXiv [RS13b]. The author hereby certifies that
parts of the previously published works that are used within this thesis were solely written by
the author himself. We mark the captions of sections with a star (›) if most of its content has
been already published in one of the two above mentioned publications.

8

Part I.

Theory of CVSAP

2. The Constrained Virtual Steiner
Arborescence Problem ›

The Constrained Virtual Steiner Arborescence Problem (CVSAP) considers multicast and ag-
gregation problems in which processing locations can be chosen to reduce traffic. As discussed
in Section 1.2, installing or leasing in-network processing capabilities comes at a certain (op-
portunistic or monetary) cost and a trade-off between installing processing functionality and
traffic reductions is searched for. In contrast to the classic Steiner Tree Problems [Voß06], our
model distinguishes between nodes that merely forward traffic and nodes that may actively
process flows, i.e. that a priori processing functionality may only be placed on a subset of all
the nodes. This is an important feature to accurately model multicast and aggregation tasks,
as clearly processing functionality cannot be placed on nodes that the user does not have ad-
ministrative control over, or that simply do not meet necessary coniditions as e.g. sufficiently
enough remaining computational power.

Independent of whether the multicasting or the aggregation case is considered, the task
is to construct a minimal cost spanning arborescence on the set of active processing nodes,
sender(s) and receiver(s), such that edges in the virtual arborescence correspond to paths in
the original graph. As edges in the virtual arborescence represent logical links (i.e., routes)
between nodes, we refer to the problem as Virtual Steiner Arborescence Problem. Based on
the notion of virtual edges, the underlying paths may overlap and may use both the (resource-
constrained) nodes and edges in the original graph multiple times (cf. Figure 1.2).

This section is structured as follows. In Section 2.2 the Constrained Virtual Steiner Arbores-
cence and its variantes will be introduced. In Section 2.3 it is shown that finding a feasible
solution to CVSAP is NP-complete and therefore, unless P “ NP , CVSAP cannot be ap-
proximated. Motivated by this result, in Section 2.4 several weaker variants are introduced
and first reductions between these derived.

2.1. Notation
In a directed graph G “ pVG, EGq we denote by PG the set of all simple, directed paths in
G. Given a set of simple paths P , we denote by Pres the subset of paths contained in P that
contain edge e. We use the notation P “ xv1, v2, . . . , vny to denote the directed path P of
length |P | “ n where Pi fi vi P VG for 1 ď i ď n and pvi, vi`1q P EG for 1 ď i ă n.
We denote the set of outgoing and incoming edges, restricted on a subset F Ď EG, for node
v P VG by δ`F pvq “ tpv, uq P F u and δ´F pvq “ tpu, vq P F u and set δ`F pW q “ tpv, uq P F |v P
W,u R W u and respectively δ´F pW q “ tpu, vq P F |v P W,u R W u. We abridge fppy, zqq to
fpy, zq for functions defined on tuples.

10

2.2. Definition of the Constrained Virtual Steiner
Arborescence Problem

Our general problem definition presented henceforth captures both the multicast and the ag-
gregation scenario. As the CVSAP is closely related to the Steiner Arborescence Problem
(SAP), we adopt and extend the Steiner literature terminology. We denote the single sender
or receiver as root and the receivers or senders that need to be connected as terminals. Nodes
that can be equipped with processing functionality are called Steiner sites. Upon installation
of processing functionality, we refer to these nodes as activated Steiner nodes.

We model the physical infrastructure as capacitated, directed networkG “ pVG, EG, cE, uEq
with integral capacities on the edges uE : EG Ñ N and positive edge costs cE : EG Ñ R`.
On top of this network, we define the following abstract communication request.

Definition 2.1: ABSTRACT COMMUNICATION REQUEST

An abstract communication request on a graph G is defined as a 5-tuple RG “

pr, S, T, ur, cS, uSq, where

• T Ď VG is the set of terminals,

• r P VGzT denotes the root with integral capacity ur P N and

• S Ď VGzptru Y T q denotes the set of possible Steiner sites with associated activa-
tion costs cS : S Ñ R` and integral capacities uS : S Ñ N.

It must be noted that we require the sets S and T to be disjoint for terminological reasons and
that joint terminals and Steiner sites can be modeled using Construction 2.7.

In the aggregation scenario the terminals represent nodes holding data that needs to be
forwarded to the root (the single receiver) while data may be aggregated at active Steiner
nodes. Contrary, in the multicast scenario the root represents the single sender that must
stream (the same) data to each of the terminals, while active Steiner nodes may duplicate and
reroute the stream. The capacities on the root and on the Steiner sites will limit the degree in
the virtual arborescence, formally introduced next.

Definition 2.2: VIRTUAL ARBORESCENCE

Given a directed graph G “ pVG, EGq and a root r P VG, a virtual arborescence (VA)
on G is defined as TG “ pVT , ET , r, πq, where tru Ď VT Ď VG, ET Ď VT ˆ VT and
π : ET Ñ PG maps each edge in the arborescence on a simple directed path P P PG

such that

(VA-1) pVT , ET , rq is an arborescence root at r with edges either directed towards or
away from r,

(VA-2) for all pu, vq P ET the directed path πpu, vq connects u to v in G.

11

A link pv, wq P ET represents a logical connection between nodes v and w while the func-
tion πpv, wq “ P defines the route taken to establish this link. Note that the directed path P
must, pursuant to the orientation pv, wq of the logical link in the arborescence, start with v
and end at w. Figure 1.2 illustrates our definition of the VA: equally colored and dashed paths
represent edges of the Virtual Arborescence. Using the concept of virtual arborescence, we
can concisely state the problem we are attending to.

Definition 2.3: CONSTRAINED VIRTUAL STEINER ARBORESCENCE PROBLEM

Given a directed capacitated network G “ pVG, EG, cE, uEq and a request RG “

pr, S, T, ur, cS, uSq as above, the Constrained Virtual Steiner Arborescence Problem
(CVSAP) asks for a minimal cost Virtual Arborescence TG “ pVT , ET , r, πq satisfying
the following conditions:

(CVSAP-1) tru Y T Ď VT and VT Ď tru Y S Y T ,

(CVSAP-2) for all t P T holds δ`ET
ptq ` δ´ET

ptq “ 1,

(CVSAP-3) for the root δ`ET
prq ` δ´ET

prq ď ur holds,

(CVSAP-4) for all s P S X VT holds δ´ET
psq ` δ`ET

psq ď uSpsq ` 1 and

(CVSAP-5) for all e P EG holds | pπpET qq res| ď uEpeq.

Any VA TG satisfying CVSAP-1 - CVSAP-5 is said to be a feasible solution. The cost of
a Virtual Arborescence is defined to be

CCVSAPpTGq “
ÿ

ePEG

cEpeq ¨ | pπpET qq res| `
ÿ

sPSXVT

cSpsq ,

where | pπpET qq res| is the number of times an edge is used in different paths.

In the above definition, CVSAP-1 states that terminals and the root must be included in
VT , whereas non Steiner sites are excluded. We identify VT zptru Y T q with the set of active
Steiner nodes. Condition CVSAP-2 states that terminals must be leaves in TG and CVSAP-
3 and CVSAP-4 enforce degree constraints in TG. The term πpET q in Condition CVSAP-5
determines the set of all used paths and consequently πpET qres yields the set of paths that use
e P ET . As π is injective and maps on simple paths, Condition CVSAP-5 enforces that edge
capacities are not violated.

Definition 2.4: MULTICAST / AGGREGATION CVSAP
The CVSAP constitutes the Constrained Virtual Steiner Aggregation Problem (A-
CVSAP) in case that the edges of ET are oriented towards r, or conversely constitutes the
Constrained Virtual Steiner Multicast Problem (M-CVSAP) if edges are oriented away
from r. We denote the set of feasible solutions by FA-CVSAP and FM-CVSAP respectively.

12

It is important to note that Definitions 2.2 and 2.4 together imply that in A-CVSAP each termi-
nal is connected to the root and conversely that in M-CVSAP the root is connected to all termi-
nals. Furthermore, the following remark establishes that the degree constraints (see CVSAP-3
and CVSAP-4) effectively constrain the number of incoming connections (A-CVSAP) and
respectively constrain the number of outgoing connections (M-CVSAP).

Remark 2.5 (Degree Constraints). Note that in case of M-CVSAP the conditions CVSAP-
2 amd CVSAP-3 reduce to @s P S X VT .δ

`
ET
psq ď uSpsq and δ`ET

prq ď ur respectively.
Analogously, conditions CVSAP-2 and CVSAP-3 simplify to @s P S X VT .δ

´
ET
psq ď uSpsq

and δ´ET
prq ď ur in A-CVSAP.

As the single difference between A-CVSAP and M-CVSAP is the orientation of the edges,
the problems can be reduced on each other:

Lemma 2.6: (Equivalence of A-CVSAP and M-CVSAP) The problems A-CVSAP and M-
CVSAP can be reduced on each other.

Proof: We only sketch the construction of reducing M-CVSAP onto A-CVSAP. Given a M-
CVSAP instance RG “ pr, S, T, ur, cS, uSq on the network G “ pVG, EG, cE, uEq, first con-
struct the reversed graph GR “ pVG, E

G
G , c

G
E, u

G
Eq, where ER

G “ tpv, uq|pu, vq P EGu and
cREpv, uq fi cEpu, vq and uREpv, uq fi uEpu, vq for all edges pu, vq P EG.

Solving the A-CVSAP instance RG on GR then yields the virtual arborescence T R
G “

pVT , E
R
T , r, π

Rq. By reversing all edges ER
T and the corresponding paths πR, the virtual ar-

borescence T is constructed, which in fact is a solution to the original M-CVSAP instance RG

on G. Note that this is a polynomial and even linear reduction. �

Based on the above lemma, it suffices to give an algorithm for either one of the two prob-
lems. Before showing the inapproximability of CVSAP in the next section, we conclude by
giving the following construction to model nodes that are both terminals and Steiner sites.

Construction 2.7: MODELING JOINT TERMINALS AND STEINER SITES

For the sake of identifying Steiner sites that are included in the virtual arborescence with
activated Steiner nodes, Definition 2.1 does require S and T to be disjoint.

vTv

Figure 2.1.

However, a node v P S X T can easily be modeled in the ag-
gregation scenario, by introducing a new node vT P T and letting
v P S, such that vT is only connected to v with cEpv, vT q “ 0 and
uEpv, vT q “ 1. Similarly, in the multicast scenario, the newly intro-
duced edge would need to be reversed towards vT . Figure 2.1 depicts
the construction for a single node v P SXT in the aggregation case.

13

2.3. Inapproximability of CVSAP
The following result shows that deriving polynomial time approximation algorithms for CVSAP
is impossible, unless P “ NP .
Theorem 2.8: Inapproximability of CVSAP

Checking whether a feasible solution for CVSAP exists is NP-complete. Thus, unless
NP Ď P holds, there cannot exist an (approximation) algorithm yielding a feasible solu-
tion in polynomial time.

Proof: We give a reduction from the decision variant of set cover. Let U denote the universe
of elements and let S Ď 2U denote a family of sets covering U . To check whether a set cover
using at most k many sets exists, we construct the following CVSAP instance. We introduce
a terminal tu for each element u P U and a Steiner site sS for each S P S. A terminal tu
is connected by a directed link to each Steiner site sS iff. u P S. Each Steiner site sS is
connected to the root r. We set the capacity of the root to k and capacities of Steiner sites to
|U |. It is easy to check that there exists a feasible solution to this CVSAP instance iff. there
exists a set cover of less than k elements. �

Notably, the above construction did not rely on node capacities.

Corollary 2.9: (Inapproximability without node capacities) In the construction of Theo-
rem 2.8 only the capacity of the root was used, as the capacity of Steiner sites was de facto
unbounded. The limited number of outgoing connections of the root can be expressed by in-
troducing a super root, which connects with a single edge to the original root in the above
construction. By limiting the number of flow on this edge to be less than ur, the same inap-
proximability results holds, when node capacities are removed altogether. �

The above corollary shows that the inapproximability only relies on the directed nature of
the problem, edge capacities and the fact that not all nodes are Steiner nodes.

2.4. Variants of CVSAP
Based on the inapproximability shown in the above section, the consideration of weaker vari-
ants of CVSAP and their computational hardness is of interest, too. Based on Corollary 2.9,
introducing edge capacities, renders the problem inapproximable. We therefore, introduce the
two following (directed) variants of CVSAP, that both do not consider edge capacities.

Definition 2.10: VIRTUAL STEINER ARBORESCENCE PROBLEM

By not considering edge capacities in the underlying network, removing root and
Steiner site capacities in the request, and by dropping the node and edge capacity con-
straints CVSAP-2 - CVSAP-5 the (unconstrainted) Virtual Steiner Arborescence Problem
(VSAP) is defined.

14

Definition 2.11: NODE CONSTRAINED VIRTUAL STEINER ARBORESCENCE PROB.
By not considering edge capacities in the underlying network and dropping the edge ca-
pacity constraint CVSAP-5 the Node Constrained Virtual Steiner Arborescence Problem
(NVSAP) is defined.

Due to its close relation to the Steiner Arborescence Problem, it is natural to consider also
the undirected variants of (N/C)VSAP.

Definition 2.12: CONSTRAINED VIRTUAL STEINER TREE PROBLEM

Analogously to the definition of VA, the concept of an undirected (rooted) Virtual Tree
can be introduced, in which (undirected) virtual edges are mapped on undirected simple
paths (see VA-1), and the orientation constraint VA-2 is dropped. Substituting δ`ET

p¨q `

δ´ET
p¨q by its undirected counterpart δET p¨q in Definition 2.3, the Constrained Virtual

Steiner Tree Problem (CVSTP) is defined.

Definition 2.13: (NODE CONSTRAINED) VIRTUAL STEINER TREE PROBLEM

Analog to the definition of the NVSAP and the VSAP (see Definitions 2.11 and 2.10),
their undirected equivalents, namely the Node Constrained Virtual Steiner Tree Problem
(NVSTP) and Virtual Steiner tree Problem (VSTP) can be derived. Their definition can
be obtained from the definition of CVSTP (see Definition 2.12) by analogously dropping
edge (and node) capacity constraints.

Due to space constraints, we only note that especially the CVSTP might be of interest in
its own right as it might have applications in e.g. designing FTTx access networks (cf. e.g.
[BLM13]). However, as Lemma 2.16 proves, CVSTP can be reduced to CVSAP and we
therefore all our results apply to CVSTP, too.

Having defined the unconstrained and undirected variants of CVSAP, we establish two sim-
ple relations between these variants.

First note the following observation.

Observation 2.14: CVSAP is a strict generalization of NVSAP and VSAP is a strict gen-
eralization of VSAP. Analogously, CVSTP is a generalization of NVSTP and NVSTP is a
generalization of VSTP.

The second observation, is that the directed variants are generalizations of the undirected
variants. To show this property, we use Construction 2.15 to convert an undirected graph into
an equivalent directed graph to solve the corresponding directed problem.

The idea exhibited in Construction 2.15 is to replace each undirected edge e “ tu, vu P EG

by a gadget of two nodes and five edges, such that all flow sent via e in the undirected network
must traverse a single directed edge in GD. This kind of construction is necessary, if edge
capacities are defined on the original networkG. If no edge capacities are given, an undirected

15

Construction 2.15: MODELING UNDIRECTED AS DIRECTED NETWORKS GD

Given an undirected, networkG “ pVG, EG, cE, uEqwith edge costs cE : EG Ñ Rě0 and
edge capacities uE : E Ñ N, we construct the following equivalent directed capacitated
network GD “ pV D

G , E
D
G , c

D
E , u

D
E q, with uDE : ED

G Ñ N Y t8u and cDE : ED
G Ñ Rě0,

where

u v

uv+

uv−

Figure 2.2.

(GD-1) V D
G fi VG Y tuv

´, uv`|tu, vu P EGu

(GD-2) ED
G fi

tpuv`, uv´q|tu, vu P EGu

Ytpu, uv`q, pv, uv`q|tu, vu P EGu

Ytpuv´, uq, puv´, vq|tu, vu P EGu

(GD-3) uDE puv`, uv´q fi uEptu, vuq for tu, vu P EG and uDE pu, vq “ 8 else.

(GD-4) cDE puv`, uv´q fi cEptu, vuq for tu, vu P EG and cDE pu, vq “ 0 else.

Figure 2.2 depicts the construction for a single undirected edge tu, vu.

edge can of course be replaced by two directed edges of equal cost. Without a detailed proof,
we give the following lemma.

Lemma 2.16: (CVSTP can be reduced on CVSAP) Each CVSTP instance, consisting of
an undirected network G “ pVG, EG, cE, uEq and a request RG “ pr, S, T, ur, cS, uSq, can be
reduced on an equivalent CVSAP problem.

Proof: To solve this instance using CVSAP first the directed NetworkGD “ pV D
G , E

D
G , c

D
E , u

D
E q

is constructed according to Construction 2.15.
Without loss of generality we compute a solution to A-CVSAP on GD given the request

RG, yielding a (directed) virtual arborescence TGD “ pV D
T , E

D
T , r, π

Dq. We claim that the
(undirected) virtual tree TG “ pVT , ET , r, πq, with VT fi V D

T , ET fi ttu, vu|pu, vq P ED
T u and

πptu, vuq fi πDpu, vq X VG for all pu, vq P ED
T , i.e. that nodes not contained in the original

graph are removed from paths, is an optimal solution to the original CVSTP instance.
As V D

T is a solution to the corresponding A-CVSAP instance, VT fulfills the following
properties:

1. VT is indeed a virtual tree, as V D
T did connect all terminals with the root.

2. VT respects the given node capacities, as these hold for V D
T .

3. VT respects the edge capacities. Assume that VT violates the capacity of any edge
e “ tu, vu by using it fpeq ą uEpeqmany times. As πD does only map on simple paths,
the edge puv`, uv´q must have been used fpeq many times. This contradicts that V D

T is

16

a feasible solution to the given CVSAP instance as fpeq must be less than or equal to
uDE puv

`, uv´q “ uEptu, vuq by Construction 2.15.

As VT has the same cost as V D
T , VT is a feasible solution to the given CVSTP instance of equal

cost.
To see that VT is indeed optimal, it suffices to check that each (undirected) solution to the

given CVSTP instance can be transformed in a similar fashion to a (directed) solution to the
corresponding A-CVSAP problem of the same cost. �

By using the same construction, we can derive the following corollary.

Corollary 2.17: (N)VSTP can be reduced on (N)VSAP. �

Observation 2.14 and Corollary 2.17 allow us to derive the relations between (N/C)VSAP
and (N/C)VSTP depicted in Figure 2.3. In Chapter 3 the relation of VSAP and (N)VSTP to
other known optimization problems will be studied, allowing to extend Figure 2.3.

Directed Undirected

CVSAP CVSTP

NVSAP NVSTP

VSAP VSTP

Obs. 2.14

Obs. 2.14

Obs. 2.14

Obs. 2.14

Lem. 2.16

Cor. 2.17

Cor. 2.17

Figure 2.3.: Relation between CVSAP variants. Directed edges represent reductions, such that
e.g. there exists a reduction of CVSTP to CVSAP.

17

3. Approximation of CVSAP Variants

In this section, the weaker (and undirected) variants of CVSAP and their relations to known
optimization problems are considered. Based on the found relations, approximation algo-
rithms are derived for VSAP, VSTP and NVSTP. For NVSTP however the approximation
algorithm might violate node capacities within a logarithmic factor.

In Section 3.1 a reduction of VSTP onto Connected Facility Location (CFL) is given. Sec-
tion 3.2 shows the equivalence of VSAP and the Steiner Arborescence Problem (SAP). Lastly,
in Section 3.3 a reduction of NVSTP onto the Degree Constrained Node Weighted Steiner Tree
Problem (DNSTP) (see Section 3.3. The problems that the CVSAP variants will be reduced
to, are introduced in the respective sections. An overview over the relation and reductions
shown within this section is given in Figure 3.1.

Directed Undirected

CVSAP CVSTP

NVSAP NVSTP DNSTP

SAP VSAP VSTP CFLP

Section 3.3
Theorem 3.22

Theorem 3.17
Section 3.2 Section 3.1

Cor. 3.11

Figure 3.1.: Relation between CVSAP variants and related optimization problems. Solid edges
represent strict cost preserving reductions while dashed edges represent reductions preserving
the cost upto a constant factor.

18

3.1. 8-Approximation of VSTP via CFLP
In this section, an approximation algorithm for VSTP is derived based on a reduction onto the
Connected Facility Location Problem (CFLP). We first state the common definition of CFLP
and then introduce the notion of the shortest path network.

Definition 3.1: CONNECTED FACILITY LOCATION PROBLEM [EIS+10]

Given: Undirected, uncapacitated network G “ pVG, EG, cEq, facilities F Ă VG with
associated opening costs cF : F Ñ Rě0, clients D Ă VG with demand D : D Ñ
Rě0 and a parameter M ě 1.

Task: Determine a subset F Ď F of facilities to open, assign each client j P D to some
open facility via mapping σ : D Ñ F and construct a Steiner tree TF Ă EG to
connect all open facilities F , minimizing the cost

CCFLPpF, TF , σq “
ÿ

iPF

cFpiq `M
ÿ

ePT

cEpeq `
ÿ

jPD
Dpjq ¨ dGpj, σpjqq ,

where dG : VG ˆ VG Ñ Rě0 is the shortest path distance between nodes in the
network G.

3.1.1. Preliminaries
To reduce VSTP onto CFLP we will use the following graph construction, which abstracts
from the underlying graph and only represents shortest paths.

Construction 3.2: SHORTEST PATHS NETWORK GSP
R

Given an uncapacitated directed networkG “ pVG, EG, cEq and a communication request
RG that defines a root r P VG, the set of Steiner sites S Ă VG and the set of terminals
T Ă VG, we define the shortest paths network GSP

R “ pV SP
G , ESP

G , cSPE q, with cSPE :
ESP

G Ñ Rě0 as follows

(GSP
R -1) V SP

G fi tru Y S Y T

(GSP
R -2) ESP

G fi

tps, rq, pt, rq| s P S, t P T u (S and T connect to r)
Y tpt, sq| t P T, s P S, dGpt, sq ă 8u (T connects to S)
Y tps1, s2q|s1, s2 P S, dGps1, s2q ă 8u (S connects to S)

(GSP
R -3) cSPE pu, vq fi dGpu, vq,

where dG : VG Ñ R` Y t8u yields the distance, i.e. the length of the shortest paths,
between any two nodes of network G or8 if no path exists.

19

Note that the above construction was defined on directed networks, but also extends to
undirected networks in the natural way.

Remark 3.3 (Shortest paths network for undirected networks).
Given an uncapacitated undirected network G “ pVG, EG, cEq, the undirected Shortest Paths
Network GSP

R is defined as for directed networks, but without edge orientations.

When deriving the approximation algorithm for VSTP, the following observation will be
crucial.

Observation 3.4: On undirected graphs, GSP
R contains the complete graph on tru Y S.

Furthermore, cSPE is a metric on GSP
R , such that the triangle inequality

cSPE ptx, zuq ď cSPE ptx, yuq ` cSPE pty, zuq

holds for all x, y, z P tru Y S and all connected triangles tx, yu, ty, zu, tx, tu on tru Y S Y T .

As an important preliminary lemma, we show that solving NVSAP on the shortest paths
network GSP

R is equivalent to solving NVSAP on the original graph.

Lemma 3.5: (Equivalence of NVSAP on G and GSP
R) Given an uncapacitated network

G “ pVG, EG, cEq and a (directed) NVSAP communication requestRG “ pr, S, T, ur, cS, uSq,
we show that solving NVSAP on G is equivalent to solving it on GSP

R .

Proof: Let TG “ pVT , ET , r, πq be an optimal solution on G for the given NVSAP instance.
We construct a feasible virtual arborescence TGSP

R
“ pV SP

T , ESP
T , r, πSP q on GSP

R of equal
cost. We set V SP

T fi VT and V SP
T fi ET and πSP pu, vq fi pu, vq for all pu, vq P ET . As TG is a

feasible solution connecting all terminals, the same must hold for TGSP
R

. Furthermore, the cost
of TGSP

R
is equal to the cost of TG, as TG is an optimal solution and therefore dGpπpu, vqq “

dGSP
R
pu, vq must hold for all pu, vq P ET .

Similarly, any optimal solution TGSP
R

on GSP
R can be transformed to a solution on G of the

same cost. Hence, solving NVSAP on GSP
R is equivalent to solving it on G.

�

As NVSTP is a generalization of VSTP (see Observation 2.14) and as NVSTP can be re-
duced onto NVSAP, the above result also holds for VSTP:

Corollary 3.6: Solving VSTP on G is equivalent to solving it on GSP
R . �

3.1.2. Synopsys of Algorithm ApproxVSTP
Given the above preliminaries, we now present Algorithm ApproxVSTP, which takes as input
an undirected network G and an uncapacitated communication request RG.

After having constructed the shortest paths network an additional node t0 that is only con-
nected to r is introduced (Line 2). The introduction of this terminal is necessary to guarantee,
that r will be contained in the set of opened facilities.

20

The set of facilities is defined to consist of all Steiner sites S and the root with the cor-
responding costs (see Line 3) and the set of clients is defined to be the the set of original
terminals plus the new node t0 (see Line 4).

Having computed a solution pF, TF , σq to the CFLP instance, a virtual tree on GSP
R is con-

structed in Lines 6-10. Assuming that r P F holds, the set of nodes contained are simply all
opened facilities and terminals.

The next step is crucial: while the definition of CFLP asks for a Steiner tree connecting F
in the underlying network, the definition of VSTP asks for a minimum spanning tree in GSP

R

as activated Steiner sites must be connected via independent paths. Thus, in Line 7 such a
minimum spanning tree is computed on the subgraph containing only facilities and the set of
edges and the corresponding paths are set accordingly in Lines 8 and 9. Lastly, from the virtual
tree T̂ SP

G defined on GSP
R a virtual tree on the original network G is obtained by expanding

path mappings of the function π̂SP to the underlying shortest paths in G.
In the next section it will be proven that ApproxVSTP constructs a feasible solution to

VSTP and that the objective value of the found solution is within a factor of 2 with respect to
the objective of the CFLP solution. Together with the 4-approximation algorithm for CFLP
by Eisenbrand et al. [Eis+10] this will yield an 8-approximation algorithm for VSTP.

Algorithm 3.1: ApproxVSTP
Input : Undirected and uncapacitated network G “ pVG, EG, cEq,

uncapacitated communication request RG “ pr, S, T, cSq
Output: Feasible Virtual Tree T̂G for VSTP

1 construct undirected GSP
R (see Construction 3.2)

2 add node t0 to V SP
G and edge tt0, ru to ESP

G

3 set F fi tru Y S and set cFpsq fi cSpsq for all s P S and set cFprq fi 0
4 set D fi tt0u Y T and Dptq fi 1 for all t P tt0u Y T
5 compute solution pF, TF , σq to CFLP instance pGSP

R ,F , cF ,D, D,M fi 1q

6 set V̂ SP
T fi F Y T

7 compute minimum spanning treeM Ă ESP
G rF s connecting F

8 set ÊSP
T fiMY ttt, fu|t P T, f “ σptqu

9 set π̂SP ptu, vuq fi tu, vu for all tu, vu P ÊSP
T

10 set T̂GSP
R

fi pV̂ SP
T , ÊSP

T , r, π̂SP q

11 obtain virtual tree T̂G fi pV̂T , ÊT , r, π̂q on G from T̂GSP
R

(by Lemma 3.5)
12 return T̂G

3.1.3. Proof of 8-Approximation
In the following we will prove that by using an approximate solution for CFLP in Line 5 we
can obtain an 8-approximation for VSTP. We begin by showing that Algorithm ApproxVSTP
constructs a feasible solution

21

Lemma 3.7: (The root is contained in F)
We show that without loss of generality, we can assume that the root r is included in F .

Proof: Assume that r is not included in F . Then t0 is connected to some s “ σpt0q. As t0
is only directly connected to r with an edge cost of 0, and therefore any shortest path from t0
to s must traverse r, we may adapt the solution as follows. F 1 fi F Y tru, T 1 fi T Y tr, su,
σ1ptq fi σptq for all t P T and σ1pt0q fi r. The solution pF 1, T 1, σ1q has the same objective
value, since the cost for connecting t0 to s is the same as connecting r to s, as we have set
M “ 1. Therefore, we can assume that r P F holds. �

Lemma 3.8: (Algorithm ApproxVSTP constructs a feasible virtual tree T̂G)
We show that T̂ SP

G is indeed a feasible virtual tree on GSP
R such that T̂G will be feasible virtual

tree on G by Lemma 3.5.

Proof: For checking that T̂ SP
G is a feasible solution to VSTP, Conditions CVSAP-1 and CVSAP-

2 as well as Condition VA-1 need to be checked. Condition CVSAP-1 holds by Lemma 3.7
as non-Steiner sites are not contained witin V SP

G . As each terminal (client) is connected to ex-
actly one Steiner node (facility), and a minimum spanning tree is computed on F , Conditions
CVSAP-2 and VA-1 hold. �

Lemma 3.9: (CFLP on GSP
R gives a lower bound for VSTP on GSP

R)
We show that for any optimal solution pF̂ , T̂F , σ̂q to CFLP on GSP

R and any feasible solution
T̂ SP
G on GSP

R

CCFLPpF̂ , T̂F , σ̂q ď CVSTPpT̂ SP
G q

holds.

Proof: This result is immediate as the only difference between CFLP on GSP
R and VSTP on

GSP
R is that opened facilities can be connected by a Steiner tree instead of a minimum spanning

tree. As the set of trees to connect facilities (namely Steiner trees) is a superset of the set of
trees to connect Steiner sites (namely minimum spanning trees), and as opening and activation
costs are equal, CFLP yields a lower bound for VSTP. �

The following Theorem 3.10 is a corollary of a well-known result which was first estab-
lished in 1968 by Gilbert and Pollak [KV12, Theorem 20.6].
Theorem 3.10

For Algorithm ApproxVSTP holds CVSTPpT̂Gq ď 2CCFLPpF, TF , σq.

Proof: First note that connection costs of clientsD to facilities F equal the costs of connecting
terminals T to F “ truYS and that both pF, TF , σq and T̂ SP

G induce the same facility opening
and Steiner activation costs. The only cost difference therefore lies in the connectivity costs
of F “ tru Y S.

As cSPE defines a metric on the set of Steiner nodes of GSP
R (see Observation 3.4), the result

that was first published by Gilbert and Pollak [KV12, Theorem 20.6] can be applied, showing
that the cost of M is upper bounded by two times the cost of TF . The underlying idea is

22

simple. By duplicating each edge in TF , a eulerian graph H is obtained. By constructing
a walk W from H that only contains nodes in F and removing an edge, a spanning tree is
constructed with cost less than two times the original Steiner tree TF . As in Line 7 a minimum
spanning tree is computed, the connection costs ofM are bounded by two times the cost of
TF , hence proving the theorem. �

The following corollary yields our 8-approximation of VSTP.

Corollary 3.11: (8-Approximation of VSTP via Algorithm ApproxVSTP)
First note that Algorithm ApproxVSTP is indeed a polynomial algorithm. CFLP can be

approximated to within a factor of 4 of optimality by the algorithm given by Eisenbrand et
al. [Eis+10]. Using this (polynomial) algorithm to construct an approximate solution to CFLP
in Line 5 in Algorithm ApproxVSTP, we obtain an 8-approximation algorithm for VSTP by
applying Lemma 3.9 and Theorem 3.10. �

3.2. Equivalence of VSAP and SAP
Having found an 8-approximation for VSTP in the above section, its directed variant, namely
VSAP (see Definition 2.10), will now be considered. It is shown that VSAP is equivalent
to the (non-virtual) Steiner Arborescence Problem (SAP), which is also referred to as the
Directed Steiner Tree Problem (DSTP) in the literature. Based on this equivalence, VSAP can
be approximated to within a logarithmic factor. However, as SAP cannot be approximated
to within a factor that is strictly less than logarithmic (unless P “ NP), this result will also
pertain to VSAP (and by Corollary 2.17 to NVSAP, too).

We first state the definition of SAP:

Definition 3.12: STEINER ARBORESCENCE PROBLEM [CHA+98]

Given: Directed, uncapacitated network G “ pVG, EG, cEq, with a set of terminals T Ă
VG and a root r P VG.

Task: Find a (Steiner) arborescence A Ď EG connecting all terminals to the root, mini-
mizing the cost CSAPpAq “

ř

ePA

cEpeq .

Note that in the literature the SAP is commonly defined in such a way that the root needs to
reach all terminals [Cha+98]. Based on Lemma 2.6, which shows the equivalence of finding
arborescences directed towards and away from the root, all results shown in the literature carry
over to the case when arborescences are directed towards the root.

3.2.1. Preliminaries
As the definition of SAP does not contain any notion of node costs, we first give a commonly
used construction to incorporate node costs as edge costs (in directed networks).

23

Construction 3.13: MODELING NODE AS EDGE COSTS, NETWORK G˘

Given a directed network G “ pVG, EG, cE, cV q with edge costs cE : EG Ñ Rě0 and
node costs cV : VG Ñ Rě0, node costs can be represented as edge costs in the following
way. We construct the directed network G˘ “ pV ˘G , E

˘
G , c

˘
Eq, with c˘E : E˘G Ñ Rě0,

where

v+ v−

Figure 3.3.

(G˘-1) V ˘G fi tv`, v´|v P VGu

(G˘-2) E˘G fi
tpu´, v`q|pu, vq P EGu

Ytpv`, v´q|v P VGu

(G˘-3) c˘Epu
`, v´q fi cEpu, vq for pu, vq P EG and c˘Epv

`, v´q “ cV pvq for all v P VG.

Figure 3.3 illustrates the construction for a single node v P VG.

Using the above construction, the cost of using a node v P VG is accounted for, if and only
if, the newly introduced edge pv´, v`q is used in the solution. As in the case of VSAP edge
capacities are not considered, we make again use of the shortest path network (see Construc-
tion 3.2). Note that in the directed shortest paths network, terminals have no incoming edges
and the root has no outgoing edges. Therefore, applying Construction 3.13 to the shortest
paths network will be sufficient to solve VSAP using SAP. We define the combination of both
constructions below.

Construction 3.14: NETWORK GSP,˘
R

Given a directed network G “ pVG, EG, cEq with edge costs cE : EG Ñ Rě0 and an
uncapacitated communication request RG “ pr, S, T, cSq the network

GSP,˘
R “ pV SP,˘

G , ESP,˘
G , cSP,˘E q

is obtained by first constructing GSP
R via r, S, T and cE and then expanding all nodes of

GSP
R via Construction 3.13 and the cost function cV : V SP

G Ñ Rě0, cV psq fi cSpsq for all
s P S and cV pvq fi 0 otherwise.

We define V SP,`
G fi tv`|v P V SP

G u and V SP,´
G fi tv´|v P V SP

G u.

3.2.2. Proof of Equivalence
In this section we first show how any VSAP instance can be solved using VSAP and then
consider the reverse direction.

Lemma 3.15: VSAP can be reduced to SAP.

Proof: Given a directed network G “ pVG, EG, cEq with edge costs cE : EG Ñ Rě0 and
a VSAP communication request RG “ pr, S, T, cSq, we construct the network GSP,˘

R (see

24

Construction 3.14) and compute a Steiner arborescence A Ă ESP,˘
G (using SAP) to connect

the set of terminals T´ fi tt´ P V SP,˘
G |t P T u with r´ P V SP,˘

G .
Given the SAP solution we construct a virtual arborescence TGSP

R
fi pV SP

T , ESP
T , r, πSP q on

GSP
R as follows:

• V SP
T fi tv P V SP

G |v´ P Au, i.e. v is included if and only if node v´ was used in A.

• ESP
T fi tpu, vq P ESP

G |pu, vq P AX pV SP,´
G ˆ V SP,`

G qu.

• πSP pu, vq fi pu, vq for all pu, vq P ESP
T .

It is easy to check, that TGSP
R

is a feasible virtual arborescence on GSP
R , as A itself is a

arborescence. We continue by showing that CVSAPpTGSP
R
q ď CSAPpAq holds.

For each edge pu, vq P ESP
G that was included in ESP

T the SAP solution A accounted for
the same cost, namely cSPE pu, vq. Furthermore, only Steiner nodes s P S have been included
in V SP

T , whose outgoing node s´ P V SP,´
G were used. As s´ can only be reached via s`

and for using the edge ps`, s´q costs of cSpsq were paid for by the SAP solution, indeed
CVSAPpTGSP

R
q “ CSAPpAq holds. Note that the given construction is polynomial.

�

Lemma 3.16: SAP can be reduced to VSAP

Proof: Showing that SAP can be reduced onto VSAP is simple. Given is an SAP instance on
a directed network G “ pVG, EG, cEq with the task to connect some set of terminals T Ă VG
to r P VG. We construct the following VSAP communication request RG “ pr, S, T, cSq,
S fi VGztru and cSpsq fi 0 for all s P S. As we formally require S and T to be disjoint, we
apply Construction 2.7, such that for each node v P S X T a new node vT is introduced, that
directly connects to the original node v. By removing all such nodes v P S X T and placing
vT into T a feasible communication request is derived.

Let TG “ pVT , ET , r, πq be an optimal solution to the VSAP instance defined in this way.
Due to zero cost edges, TG may use edges multiple times and even in reverse direction. By
the following set of reductions, we can guarantee, that each edge is used at most once and that
each node uses at most one ougoing edge.

• If a (directed) edge pu, vq P EG is used in multiple paths P “ πpET qrpu, vqs, then all
these paths (and the corresponding edges in ET) can be truncated to end at u. If node
u was already an active Steiner node, then the virtual arborescence is still connected, as
paths are simple. Otherwise, if node u was not an active Steiner node, it can be activated
at zero cost and be placed in VT . To connect u we pick an arbitrary path P P P and
proceed as follows. Assuming that node u is the i-th node of P , we connect u towards
P|P | via the path xPi “ u, Pi`1, . . . , P|P |y. By definition, the target of the path must
either be an active Steiner node s or the root r and in the former case s is still connected
to r, since the only possibility to disconnect it would be to create a loop. This however
is not possible, as u was not active before and u therefore had no incoming connections.

25

• If there exists a node u P VG for which multiple outgoing edges are used in paths, then
the same argument as above can be applied. Let P “ πpδ`puqq denote the set of paths
that use one of u’s outgoing edges. If u was an active Steiner node, all paths, except u’s
own can be truncated to terminate at u and ET can be adapted wihtout violating con-
nectivity. On the other hand, if u was not active, then u can be activated and connected
in the following way: choose a single path P P P and assume again that u occurs at the
i-th position of P . Then P1 can be connected to u via the path prefix xP1, . . . , Piy and
u can be connected to P|P | via the path prefix xPi, . . . , P|P |y. Then again, as u is now
activated, all other paths using another outgoing edge than u’s path can be truncated to
end at u.

By iteratively applying the above reduction steps until no further reduction is possible,
we can guarantee, that no edge of the underlying graph is used more than once and that for
each node at most one outgoing edge is used. As the above reductions preserve connectivity
requirements of virtual arborescences, the edge set A fi

Ť

pu,vqPET
πpu, vqmust be an arbores-

cence in the underlying graph that connects all terminals T to the root, once we remove edges
originating at terminals that were artificially introduced by Construction 2.7. As during the
reduction process, paths were only truncated or splitted and as activating Steiner nodes comes
at no cost, CSAPpAq ď CVSAPpTGSP

R
q must hold.

To check that the above reduction is indeed polynomial, note that in the optimal solution
TG each edge of the underlying network G is used at most once by each virtual connection in
ET as π maps on simple paths. Executing either one of the two local reductions does either
strictly decrease the number of edges that are used multiple times or does strictly decrease the
number of nodes with more than one outgoing connection while not increasing the other. As
finding an edge or a node that is used multiple times or that has multiple outgoing connections
can be implemented in polynomial time, the reduction overall is polynomial.

�

By the above two lemmas, we have shown the equivalence of VSAP and SAP.
Theorem 3.17: Equivalence of VSAP and SAP.

There exists a cost preserving mapping between solutions of VSAP and SAP. Therefore,
both problems are equivalent.

By the above theorem, all results for SAP pertain to VSAP. The most two important to note
are the following ones:

Corollary 3.18: (Approximation-hardness of VSAP [Cha+98])
As VSAP is equivalent to SAP, there cannot exist an oplog |T |q-approximation algorithm

unless NP Ď DTIME rnOplog lognqs holds. �

Corollary 3.19: (Oplog |T |q-approximation for VSAP) There exists anOplog |T |q-approximation
algorithm for SAP [Cha+98]. Based on the cost-preserving construction given in Lemma 3.15,
this approximation result pertains to VSAP. �

26

3.3. Approximation of NVSTP via DNSTP
In this section we will lastly derive an approximation algorithm for the Node Constrained
Virtual Steiner Tree Problem as introduced by Definition 2.13. Ravi et al. [Rav+01] have
considered a very similar problem, namely the Degree-Constrained Node Weighted Steiner
Tree Problem (DNSTP), whose definition we repeat below.

Definition 3.20: DEGREE-CONSTRAINED NODE WEIGHTED STEINER TREE

PROBLEM [RAV+01]

Given: Undirected network G “ pVG, EG, cE, cV , uV q with edge costs cE : EG Ñ Rě0
1,

node costs cV : VG Ñ Rě0, and a degree bound function uV : VG Ñ Ně2 and set
of terminals T Ă VG.

Task: Find a Steiner tree T Ď EG connecting all terminals T , such that for each node
v that is contained in T the degree bound is not violated, i.e. that δT pvq ď uV pvq
holds, minimizing the cost CDNSTPpT q “

ř

ePT
cEpeq `

ř

vPT
cV pvq .

The authors of [Rav+01] have obtained the following important bi-criteria approximation
result for DNSTP.
Theorem 3.21: Logarithmic bi-criteria approximation for DNSTP [Rav+01]

There is a polynomial-time algorithm that, given an undirected graph G on n nodes with
nonnegative costs on its [edges and]1nodes, a subset T of nodes called terminals, and
a degree bound uV pvq ě 2 for every node v, constructs a Steiner tree spanning all the
terminals, with degree OpuV pvq log |T |q at a node v and of cost Oplog |T |q times that of
the minimum-cost Steiner tree of G that spans all the terminals and obeys all the degree
bounds.

Based on this approximation result, we will prove the following.
Theorem 3.22: Logarithmic bi-criteria approximation for NVSTP

There is a polynomial-time algorithm that, given a NVSTP instance, constructs a virtual
arborescence, for which the degree of included Steiner sites and the root is violated only
by a logarithmic factor, and which is of cost Oplog |T |q times that of the minimum-cost
virtual arborescence that satisfies all NVSTP degree constraints.

Note that in the above theorem we state that only the degree constraints of Steiner nodes
and the root may be violated. Thus, we will have to enforce that the degree of terminals in the
virtual arborescence is one, i.e. that a terminal possesses no processing functionality and is
connected to either an active Steiner node or to the root directly.

1 The original definition and the corresponding theorem only considers the node weighted case. Based on
Construction 3.23 which was given by the authors of [Rav+01], edge costs can be included without loss of
generality.

27

3.3.1. Preliminaries
For the sake of completeness, we explicitly state how edge costs can be incorporated into node
weighted networks. This construction was already mentioned in [Rav+01].

Construction 3.23: MODELING EDGE COSTS AS NODE COSTS, NETWORK GN ,
[RAV+01]
Given an undirected network G “ pVG, EG, cE, cV q with edge costs cE : EG Ñ Rě0 and
node costs cV : VG Ñ R`, edge costs can be represented as node costs in the following
way. We construct the undirected network GN “ pV N

G , EN
G , c

N
V q, with cNV : V N

G Ñ Rě0,
where

u vė

Figure 3.4.

(GN -1) V N
G fi VG Y t 9e|e P EGu

(GN -2) EN
G fi ttu, 9eu, t 9e, vu|e “ tu, vu P EGu

(GN -3) cNV pvq fi cV pvq for v P VG and c˘Ep 9eq “ cEpeq for all e P EG.

Figure 3.4 illustrates the construction for a single edge e “ tu, vu P EG.

As solving a given NVSAP instance given by communication request RG on G is equiv-
alent to solving it on GSP

R (see Lemma 3.5), and as NVSTP can be reduced to NVSAP by
Corollary 2.17, the same result holds in the undirected case as well.

Corollary 3.24: (Equivalence of NVSTP on G and GSP
R)

Given an uncapacitated, undirected network G “ pVG, EG, cEq and a NVSTP communication
request RG “ pr, S, T, ur, cS, uSq, solving NVSTP on G is equivalent to solving it on GSP

R .
�

The next observation shows how NVSTP can generally be reduced onto DNSTP.

Observation 3.25: (Reducing NVSTP onto DNSTP)
Given an undirected, uncapacitated network G “ pVG, EG, cEq with edge costs cE : EG Ñ

Rě0 and a NVSTP communication request RG “ pr, S, T, uSq, first the shortest paths network
GSP

R is constructed.
We define the degree bound function uSPV : V SP

G Ñ Ně1 for DNSTP on GSP
R by uSPV psq fi

uSpsq for all s P S, uSPV prq fi urprq and uSPV ptq fi 1 for all t P T and the node cost cSPV :
V SP
G Ñ Rě0 as cSPV psq fi cSpsq for all s P S and cSPV pvq fi 0 for all v P V SP

G zS.
It is easy to check that each solution of DNSTP on the network pV SP

G , ESP
G , cSPE , cSPV , uSPV q

and the set of terminals truYT represents a feasible solution for the NVSTP instance onGSP
R ,

as DNSTP naturally defines a virtual tree.

1. All terminals and the root are connected by a Steiner tree. Therefore, the connectivity
requirement of Definition VA-1 holds.

28

2. All degree constraints of NVSTP are enforced by the definition of uSPV .

3. For each Steiner site s P S that is included in the DNSTP solution, the cost of cSpsq is
accounted for.

By Corollary 3.24 this feasible solution then yields a feasible solution for the original
NVSTP instance on G. Furthermore, both the DNSTP solution and the NVSTP solution will
have the same objective value by construction.

While the Observation 3.25 suggests a direct reduction of NVSTP onto DNSTP, such that
Theorem 3.21 can be applied to obtain our Theorem 3.22, the following needs to be taken into
consideration.

1. By setting uSPV ptq “ 1 for terminals t P T , we violate the requirement that uSPV pvq ě 2
holds for all nodes v P V SP

G (see Definition 3.20 and Theorem 3.21).

2. Furthermore, the solution of the approximation algorithm of Ravi et al. (see Theo-
rem 3.21) may violate degree bounds within a logarithmic factor.

To obtain Theorem 3.22, we therefore have to show how a DNSTP solution in which ter-
minals are connected to multiple nodes can be transformed into a solution of (approximately)
the same cost in which terminals are leaves. This algorithm will be introduced in the next
section. As main preparation to derive Algorithm Leafify, we will argue about the structure of
the connections of terminals using the below definition.

Definition 3.26: TERMINAL CONNECTION SUBGRAPH, G ~TS
T

Given a DNSTP solution T Ď ESP
G , we define the following subgraph G

~TS
T “

pV
~TS

T , E
~TS
T q of GSP

R .

(G ~TS
T -1) V ~TS

T fi V SP
G zptt P T |δT ptq “ 1u Y ts P S|δT psq “ 0uq

(G ~TS
T -2) E ~TS

T fi ttt, vu P T |t P V ~TS
T u

In the above definition, all terminals that already have a degree of 1 are exlcuded and so are
unused Steiner sites. Only edges incident to terminals ,with degree greater one, are included.

The following observation follows from the construction of GSP
R .

Observation 3.27: G
~TS
T is a bipartite graph with disjoint node sets V ~TS

T X T and V ~TS
T zT .

The next observation follows from the fact that T is a tree.

Observation 3.28: G
~TS
T is a forest and thereby acyclic.

The next lemma will be the key for deriving the desired reduction.

29

Lemma 3.29: There exists a matching of size |V ~TS
T | in G ~TS

T .

Proof: LetM Ă E
~TS
T denote a matching of maximal cardinality in G ~TS

T . As for |M| “ |V ~TS
T |

the lemma would hold, assume for the sake of deriving a contradiction, that |M| ă |V
~TS

T |

holds, such that there exists a terminal t0 P V
~TS

T that is not connected inM.
We use the following iterative construction. We define the following two sets T0 “ tt0u and

S0 fi ts|tt0, su P E
~TS
T u and iterate according to the following scheme for i ě 1.

Ti fi tt|s P Si´1, tt, su PMu
Si fi ts|t P Ti, tt, su P E

~TS
T zMu

We first note that by definition of Si and Ti all nodes contained in Si and Ti are connected to
t0. Furthermore, as G ~TS

T is a forest, the path, with which each node of Si and Ti is connected
to t0 is unique. As we assume that M is a maximal matching, the set of terminals

Ť

iě0 Ti
cannot be adjacent to a single Steiner node which is not covered byM: if a terminal ti P Ti
would exists, such that tti, su P E

~TS
T and s R M holds, then the unique path that connects

s via ti and the sets Si´1, Ti´1, Si´2, . . . , T1 to t0 could be employed as augmenting path to
increase the number of edges by one. By the maximality ofM, this is not possible. Therefore,
each Steiner node si P Si must be connected to an unique terminal in Ti`1. Thus |Ti`1| “ |Si|

holds. However, if si were to be covered by node tj P Tj for j ă i´ 1 then a cycle consisting
of nodes in pTj, Sj, Tj`1, Sj`1, . . . , Si, Tiq would have existed in G ~TS

T before as all nodes are
uniquely connected to t0 and si were to be reachable via two paths. Lastly, as each terminal
has degree at least two and can only be covered by at most one edge ofM, |Si| ě |Ti| follows
as no two Steiner nodes within Ti can be connected to the same node s P Si, since this would
again induce a cycle. By the above observations, therefore

|T0| ď |S0| ď |T1| ď |S1| ď . . .

must hold. However, as the sets Si, Sj are disjoint for i ‰ j and as |T0| “ 1 holds, this
implies that |Si| ě i holds for all i ě 0. As we are considering finite graphs and the set of
nodes is finite, this cannot be possible true. Therefore, there always exists a matching of size
|V

~TS
T | in G ~TS

T . �

Based on the above lemma, it is easy to construct Algorithm Leafify.

3.3.2. Algorithm Leafify
Algorithm Leafify takes as input a DNSTP solution and the set of terminals and returns a
DNSTP solution in which terminals are leaves. To construct the new DNSTP solution T̂ in
which terminals are leaves, the Algorithm Leafify initially computes the terminal connection
subgraph G ~TS

T and computes a maximal mathchingM on it (see Lines 2,3). In the loop from
Lines 4-8 each terminal is reconnected, such that only the connection to Steiner node s0, to
which it is connected inM, is preserved. In exchange, Steiner nodes are connected in a line.

30

Algorithm 3.2: Leafify
Input : DNSTP solution T on GSP

R “ pV SP
G , ESP

G q, Set of Terminals T

Output: DNSTP solution T̂ on GSP
R “ pV SP

G , ESP
G q with δT̂ ptq “ 1 for all t P T

1 set T̂ fi T
2 construct G ~TS

T “ pV
~TS

T , E
~TS
T q from T

3 compute maximal matching M Ă E
~TS
T on G ~TS

T

4 foreach t P V ~TS
T do

5 let s0 P V
~TS

T , such that tt, s0u PM
6 set S̄ fi ts1, s2, s3, . . . , sn|1 ď i ď n, tt, siu P E

~TS
T u

7 set T̂ Ð pT̂ zttt, s̄u|s̄ P S̄uq Y ttsi´1, siu|1 ď i ď nu

8 end
9 return T̂

Note that by Lemma 3.29 there exists for the computed matching |M| “ |V ~TS
T | holds and

therefore the algorithm is well defined, as s0 P V
~TS

T as chosen in Line 5 must always exist.
We further note that the runtime of Algorithm Leafify is dominated by computing a maximal
matching, which can be obtained on bipartite graphs in polynomial time [KV12].

3.3.3. Proof of Correctness of Algorithm Leafify
We only shortly prove the correctness of ALgorithm Leafify.

Lemma 3.30: (Algorithm Leafify is correct.) We prove that given a feasible DNSTP solution,
i.e. a Steiner tree T , Algorithm Leafify outputs a feasible Steiner tree T̂ with δT̂ ptq “ 1 for
all t P T .

Proof: Based on the connection scheme employed in Line 7 of Algorithm Leafify, connectiv-
ity is preserved in each iteration of the loop. Therefore T̂ is still connected. To check that T̂
is indeed a tree, note that cycles within T̂ directly translate to cycles in G ~TS

T , which is impos-
sible. Lastly, as all but one edge that did connect t P T to V ~TS

T zT is removed, the degree of
all terminals is one. �

The following theorem was already proven in a similar form by Fuchs [Fuc03].
Theorem 3.31: Algorithm Leafify increases the cost by at most a factor of 2.

Given a feasible DNSTP solution T on GSP
R which might violate degree constraints of

terminals T , for the DNSTP solution ÊT obtained by calling Algorithm Leafify holds

CDNSTPpT̂ q ď 2CDNSTPpT q .

31

Proof: We show that the edge costs are doubled at most, as costs for opening Steiner sites are
not changed. For each newly introduced edge tsi´1, siu (see Line 7), the costs can be bounded
by the triangle inequality on GSP

R (see Observation 3.4) by cEptsi´1, siuq ď cEptt, si´1uq `

cEptt, siuq. Therefore, the sum of costs for newly introduced edges is

cEptt, s0uq ` 2 ¨
n´1
ÿ

i“1

cEptt, siuq ` cEptt, snuq

As all edges tt, siu for 1 ď n are removed, the edge costs double at most, concluding the
proof of the theorem. �

Theorem 3.32: Algorithm Leafify increases the degree by at most a factor of 2.

Given a feasible DNSTP solution T on GSP
R which might violate degree constraints of

terminals T , and having obtained the DNSTP solution T̂ by calling Algorithm Leafify,
for each non-terminal node v P T̂ zT holds

δT̂ pvq ď 2δT pvq.

Proof: Based on the swapping of edges in Line 7, the degree of nodes ts0, s1, . . . , sn´1u in-
creases by one. Note however, that terminal t connected to all of the above Steiner nodes
before. Therefore, in each iteration of the loop in Lines 4-8 the degree of Steiner nodes is
increased at most by one per each connected terminal. Therefore, the degree of each Steiner
node (or of the root) is at most doubled. �

3.3.4. Logarithmic Bi-Criteria Approximation of NVSTP
Having proven the correctness of Algorithm Leafify in the above section, we can now prove
Theorem 3.22.
Proof (Theorem 3.22): The following algorithm yields a bi-criteriaOplog |T |q-approximation
for any NVSTP instance. The algorithmic outline described in Observation 3.25 is adapted in
such a way, that we require uSPV ptq fi 2 for all terminals t P T and that we compute an approx-
imate solution T to the corresponding DNSTP instance on GSP

R according to Theorem 3.21.
Then Algorithm Leafify is used to ensure that terminals in the Steiner tree T̂ are leaves. By
introducing πptu, vuq fi tu, vu for tu, vu P T̂ , T̂ is a virtual tree for the NVSTP instance on
GSP

R which by 3.24 defines a virtual tree on the original instance.
Based on Theorems 3.31 and 3.32 both the cost and the degree violations are only increased

by a factor of two. Since DNSTP is a generalization of NVSTP, as terminals are not con-
strained to be leaves, this proves that the Algorithm described indeed yields a logarithmic
bi-criteria approximation of NVSTP, as the runtime of Algorithm Leafify is polynomial. �

32

Part II.

Exact Algorithms for CVSAP

4. A Multi-Commodity Flow
Formulation ›

This section introduces a naive multi-commodity flow (MCF) formulation (see A-CVSAP-
MCF) to solve (A-)CVSAP. The formulation A-CVSAP-MCF models the virtual arborescence
searched for rather directly, as it uniquely determines virtual links and paths for active Steiner
nodes. This explicit representation comes at the price of a substantially larger model. In
Section 14 we provide a computational comparison showing the superiority of our compact
formulation developed in Section 5.

4.1. Notation
For ease of representation of A-CVSAP-MCF we use an extended graph similar to the one
introduced in Section 5.

Definition 4.1: EXTENDED GRAPH FOR A-CVSAP-MCF Given a directed net-
work G “ pVG, EG, cE, uEq and a request RG “ pr, S, T, ur, cS, uSq as introduced in
Section 2.2, we define the extended graph GMCF “ pVMCF, EMCFq for the A-CVSAP-MCF
formulation as follows:

(EXT-1-MCF) VMCF fi VG Y to´u ,

(EXT-2-MCF) EMCF fi EG Y tpr, o´qu Y ES´

MCF ,

where ES´

MCF fi S ˆ to´u.

We use the Kronecker-Delta δx,y P t0, 1u, where δx,y “ 1 holds iff. x “ y. Flow variables
corresponding to different commodities are distinguished by superscripts and we use f xpYq to
denote

ř

yPY f
xpyq. We denote the set of feasible solution for A-CVSAP-MCF by FMCF.

4.2. The MIP Model
The formulation A-CVSAP-MCF uses one commodity for each Steiner site (see MCF-10) and
a single commodity for the flow originating at the terminals (see MCF-9). Note that while f s

defines a flow variable for each Steiner site s P S we use fT to denote a single commodity for
all terminals. Furthermore note that flow variables f s corresponding to Steiner sites are binary
whereas the aggregated flow variables fT from the terminals are defined to be integers.

34

Integer Program 4.1: A-CVSAP-MCF

minimize CMCF “
ÿ

ePEG

cepfe `
ÿ

sPS

fs,eq (MCF-OBJ)

`
ÿ

sPS

cs ¨ xs

subject to fT
pδ`EMCF

pvqq “fT
pδ´EMCF

pvqq ` |tvu X T | @ v P VG (MCF-1)

f s
pδ`

ES
MCF
pvqq “f s

pδ´
ES

MCF
pvqq ` δs,v ¨ xs @ s P S, v P VG (MCF-2)

fT
e `

ÿ

sPS

f s
e ď

$

’

&

’

%

usxs, e “ ps, o´q, s P S
ur , e “ pr, o´q
ue , e P EG

@e P EMCF (MCF-3)

´|S|p1´ f s
s̄,o´q ďps ´ ps̄ ´ 1 @ s, s̄ P S (MCF-4)

f s
ps̄,o´q ďxs̄ @ s P S, s̄ P S ´ s (MCF-5‹)

f s
s,o´ “0 @ s P S (MCF-6‹)

f s
s̄,o´ ` f

s̄
s,o´ ď1 @ s, s̄ P S (MCF-7‹)

xs P t0, 1u @ s P S (MCF-8)

fT
e P Zě0 @ e P EMCF (MCF-9)
f s
e P t0, 1u @ s P S, e P EMCF (MCF-10)
p P r0, |S| ´ 1s @ s P S (MCF-11)

We now briefly describe how a solution px, p, f s, fT q P FMCF relates to a virtual arbores-
cence T̂G “ pV̂T , ÊT , r̂, π̂q P FA-CVSAP. We naturally set V̂T fi tru Y ts P S|x̂s ě 1u Y T and
r̂ “ r. We continue by showing how ÊT and π̂ can be retrieved.

Constraints MCF-1 and MCF-2 specify flow preservation for the commodities such that
terminal nodes emit one unit of flow in fT and activated Steiner nodes emit one unit of flow
in f s. Note that in Constraint MCF-2 δs,v is a constant. As these constraints are specified for
nodes v P VG, flows in fT and f s must terminate in o´ via edges in ES´

MCF or via pr, o´q.
If a Steiner node s P S is activated, f s defines a path P s from s to o´. We therefore include

e “ ps, P s
|P s|´1q in ÊT and set π̂peq “ xP s

1 , . . . , P
s
|P s|´1y. As we use a single commodity for

flow originating at the terminals, we have to first decompose fT into paths tP t|t P T u such
that P t originates at t and terminates in o´. Due to the single destination, this can always be
done using the standard s´ t flow decomposition [AMO93].

As the capacity constraints MCF-3 effectively constrain the number of incoming connec-
tions and the validity of edge capacities, we only need to establish the validity of connectivity
condition VA-2 to show that T̂G P FA-CVSAP holds. As terminals and active Steiner nodes
must be connected as discussed above, VA-2 may only be violated by T̂G if a cycle exists

35

in ÊT . To forbid such cycles, we adapt the well-known Miller-Tucker-Zemlim (MTZ) con-
straints [CCL09] using continuous priority variables ps P r0, |S| ´ 1s in MCF-4. The MTZ
constraint MCF-4 enforces f sps̄, o´q “ 1 ñ ps ě ps̄ ` 1, forbidding cyclic assignments
containing only Steiner nodes. As terminals may not receive flow and the root may not send
flow, this suffices to forbid cycles in ÊT overall and thus T̂G P FA-CVSAP holds.

As formulations relying on MTZ constraints are comparatively weak [PVD01], we intro-
duce additional valid inequalities MCF-5‹, MCF-6‹ and MCF-7‹ to strengthen the formula-
tion. Constraint MCF-6‹ disallows Steiner node s P S to absorb its own flow and MCF-7‹

explicitly forbids cycles of length 2. Lastly, Constraint MCF-5‹ forces Steiner nodes receiving
flow from another Steiner node to be activated.

4.3. Implementation
We have implemented the IP formulation A-CVSAP-MCF in the GNU Mathematical Pro-
gramming Language (GMPL) that is part of the GNU Linear Programming Kit (GLPK)
[GNU13]. Given a GMPL model file, GLPK can be used to produce an .lp file which can
be solved using commercial solvers as CPLEX [CPL13]. The model and the data files can be
obtained from [RS13a].

36

5. VirtuCast Algorithm
In this section we present the Algorithm VirtuCast to solve CVSAP. VirtuCast first computes
a solution for a single-commodity flow Integer Programming formulation and then constructs
the corresponding Virtual Arborescence. Even though our IP formulation can be used to com-
pute the optimal solution for any CVSAP instance, feasible solutions to our IP formulation
already yield feasible solutions to CVSAP. This allows to derive near-optimal solutions dur-
ing the solution process.

5.1. The IP Model
Our IP (see IP-A-CVSAP) is based on an extended graph containing a single super source
o` and two distinct super sinks o´S and o´r (see Definition 5.1). While o´r may only receive
flow from the root r, all possible Steiner sites s P S connect to o´S . Distinguishing between
these two super sinks is necessary, as we will require activated Steiner nodes to not absorb
all incoming flow, but forward at least one unit of flow towards o´r , which will indeed ensure
connectivity.

Definition 5.1: EXTENDED GRAPH Given a directed network G “ pVG, EG, cE, uEq
and a request RG “ pr, S, T, ur, cS, uSq as introduced in Section 2.2 we define the ex-
tended graph Gext “ pVext, Eextq as follows

(EXT-1) Vext fi VG Y to`, o´S , o
´
r u ,

(EXT-2) Eext fi EG Y tpr, o´r qu Y E
S´

ext Y E
S`

ext Y E
T`

ext ,

where ES´

ext fi S ˆ to´S u, E
S`

ext fi to`u ˆ S and ET`

ext fi to`u ˆ T . We define ER
ext fi

EextzE
S´

ext .

Further Notation.
To clearly distinguish between variables and constants, we typeset constants in bold font: in-
stead of referring to cE, cS and uE, ur, uS we use cy and uy, where y may either refer to an
edge or a Steiner site. Similarly, we use uy where y may either refer to an edge, the root or
Steiner node. We abbreviate

ř

yPY fy by fpYq. We use Y ` y to denote Y Y tyu and Y ´ y to
denote Yztyu for a set Y and a singleton y. For f P ZEext

ě0 we define the flow-carrying subgraph
Gf

ext fi pV
f

ext, V
f

extq with V f
ext fi Vext and V f

ext fi te|e P Eext ^ fpeq ě 1u.

37

The IP formulation IP-A-CVSAP uses an integral single-commodity flow and we define a
flow variable fe P Zě0 for each edge e P Eext in the extended graph (see IP-11). As we use
an aggregated flow formulation, that does not model routing decisions explicitly, we show in
Section 5.2 how this single-commodity flow can be decomposed into paths for constructing
an actual solution for CVSAP.

Whether a Steiner site s P S is activated is decided by the binary variable xs P t0, 1u
(see IP-10). Constraint IP-8 forces each terminal t P T to send a single unit of flow. As flow
conservation is enforced on all original nodes v P VG (see IP-1), all flow originating at o` must
be forwarded to one of the super sinks o´r or o´S , while not violating link capacities (see IP-7).

Integer Program 5.1: IP-A-CVSAP

minimize CIPpx, fq “
ÿ

ePEG

cefe `
ÿ

sPS

csxs (IP-OBJ)

subject to fpδ`Eext
pvqq “fpδ´Eext

pvqq @ v P VG (IP-1)
fpδ`

ER
ext
pW qq ěxs @W Ď VG, s P W X S ‰ H (IP-2)

fpδ`
ER

ext
pW qq ě1 @W Ď VG, T XW ‰ H (IP-3‹)

fe ěxs @ e “ ps, o´S q P E
S´

ext (IP-4‹)

fe ďusxs @ e “ ps, o´S q P E
S´

ext (IP-5)
fpr,o´r q ďur (IP-6)

fe ďue @ e P EG (IP-7)

fe “1 @ e P ET`

ext (IP-8)

fe “xs @ e “ po`, sq P ES`

ext (IP-9)
xs Pt0, 1u @ s P S (IP-10)
fe PZě0 @ e P Eext (IP-11)

As the definition of A-CVSAP requires that each terminal t P T establishes a path to r, we
need to enforce connectivity; otherwise active Steiner nodes would simply absorb flow by di-
recting it towards o´S . To prohibit this, we adopt well-known Connectivity Inequalities [LR04]
and Directed Steiner Cuts [KM98]. Our Connectivity Inequalities IP-2 state that each set of
nodes containing a Steiner site s P S must emit at least one unit of flow inER

ext, if s is activated.
As ER

ext does not contain edges towards o´S , this constraint therefore enforces that there exists
a path in Gf

ext from each activated Steiner node s to the root r.
Analogously, the Directed Steiner Cuts IP-3‹ enforce that there exists a path from each

terminal t P T towards r inGf
ext. These directed Steiner cuts constitute valid inequalities which

are implied by IP-1 and IP-2 (see Lemma 5.4). These Directed Steiner Cuts can strengthen the
model by improving the LP relaxation during the branch-and-cut process, as the next lemma

38

shows. As they are not needed for proving the correctness and could technically be removed,
we mark them with a ‹ (star).

Lemma 5.2: The directed Steiner cuts (see IP-3‹) can strengthen the formulation 5.1, i.e.
improve the objective value of its LP relaxation.

Proof: Consider the simple example in which the whole network G “ pVG, EGq consists only
of three nodes on a line: VG “ tr, s, tu and EG “ tpt, sq, ps, rqu. We consider the following
capacities and costs uSpsq “ 10, urprq “ 1, cEpt, sq “ cEps, rq “ 1, cSpsq “ 5 and that r is
the root, s is the single Steiner location and t the only terminal. The optimal solution of 5.1
without IP-3‹ and relaxing the constraints IP-11 and IP-10 to f P REext

ě0 and x P r0, 1sS is
fpt, sq “ 1, xs “ 1{10 and fps, rq “ 1{10 yielding an objective value of 5 ¨ xs ` fpt, sq `
fps, rq “ 1.6 By introducing Constraint IP-3‹ fps, rq must equal 1 and therefore, the solution
obtained by introducing this constraint yields the integral solution fpt, sq “ fps, rq “ 1 and
xs “ 0 with objective value 2, therefore strengthening the model. Note that we did not give
values for the edges from and to the super sinks which are introduced in Eext as these do not
influence the objective value. �

As a Steiner node s P S is activated iff. xs “ 1, Constraint IP-9 requires activated Steiner
nodes to receive one unit of flow while being able to maximally absorb us many units of
flow by forwarding it to o´S (see IP-5). Furthermore, by IP-5 inactive Steiner sites may not
absorb flow at all. The Constraint IP-4‹ requires active Steiner nodes to at least absorb one
unit of flow. This is a valid inequality, as activating a Steiner site s P S incurs non-negative
costs. We introduce this constraint here, as it specifies a condition that is used in a proof later
on. Constraint IP-6 defines an upper bound on the amount of flow that the root may receive
and the objective function IP-OBJ mirrors the CVSAP cost function (see Definition 2.3). We
denote with FIP “ tpx, fq P t0, 1u

S ˆZEext
ě0 |IP-1 - IP-11u the set of feasible solutions to IP-A-

CVSAP and with FLP the solution space of IP-A-CVSAP in which the variables are relaxed
to xs P r0, 1s and fe P Rě0.

5.2. Flow Decomposition

Given a feasible solution px̂, f̂q P FIP for IP-A-CVSAP, Algorithm Decompose constructs a
feasible solution T̂G P FA-CVSAP for CVSAP. Similarly to well-known algorithms for comput-
ing flow decompositions for simple s-t flows (see e.g. [AMO93]), our algorithm iteratively
deconstructs the flow into paths from the super source o` to the super sinks o´S or o´r , which
are successively removed from the network. However, as IP-A-CVSAP does not pose a sim-
ple flow problem, we constantly need to ensure that Connectivity Inequalities IP-2 hold after
removing flow in Gf̂

ext. We first present Decompose in more detail and prove its correctness.
A short runtime analysis is contained in Section 5.3.

39

5.2.1. Synopsis of Algorithm.

Algorithm Decompose constructs a feasible VA T̂G given a solution px̂, f̂q P FIP. In Line 2, T̂G
is initialized without any edges but containing all the nodes the final solution will consist of,
namely the root r, the terminals T and the activated Steiner nodes ts P S|xs ě 1u. In Line 3
a terminal node t P T̂ is selected for which a path is constructed to either an active Steiner
node or to the root itself (Lines 5-13). In Line 5 a path P , connecting t to the root r in the
flow network Gf̂

ext, is chosen (see Lemma 5.4 for the proof of existence for such a path). Note
that by definition of Gf̂

ext all edges contained in P carry at least one unit of flow. Within the
loop beginning in Line 6, the flow on path P is iteratively decremented (see Line 7) as long as
the Connectivity Inequality IP-2 is not violated. In case it is violated, we revert the reduction
of flow (see Line 11) and select a path towards the super sink o´S starting at the current node
Pj (see Line 10). Such a path must exist according to Lemma 5.6. The path P is accordingly
redirected in Line 12 .

The path construction (in Lines 5 to 12) terminates once the flow from the second last node
P|P |´1 towards the last node P|P | has been reduced. By construction, the path P leads from the
super source o` via the terminal t P T̂ towards the super sink o´r or o´S . If P terminates in o´S
via Steiner node s “ P|P |´1 P Ŝ such that ps, o´S q carries no flow anymore, s itself becomes a
terminal (see Lines 15 and 16). Otherwise, P terminates in o´r and P|P |´1 “ r holds. Lastly,
in Line 18 the (virtual) edge pt, P|P |´1q is added to ÊT and π̂pt, P|P |´1q is set accordingly to
the truncated path P , where head, tail and any cycles are removed (function simplify).

5.2.2. Proof of Correctness
We will now formally prove the correctness of Algorithm Decompose, thereby showing that
IP-A-CVSAP can be used to compute (optimal) solutions to CVSAP. We use an inductive ar-
gument similar to the one used for proving the existence of flow decompositions (see [AMO93]).
we assume that all constraints of IP-A-CVSAP hold and show that for any terminal t P T a
path towards the root or to an active Steiner node can be constructed, such that decrementing
the flow along the path by one unit does again yield a feasible solution to IP-A-CVSAP, in
which t has been removed from the set of terminals (see Theorem 5.3 below). During the
course of this induction, the well-definedness of the choose operations is shown.
Theorem 5.3: Induction Step

Assuming that the constraints of Decompose hold with respect to Ŝ, T̂ , f̂ , x̂ before exe-
cuting Line 4, then the constraints of Decompose will also hold in Line 18 with respect to
then reduced problem Ŝ, T̂ , f̂ , x̂.

To prove the above theorem, we use the following Lemmas 5.4 through 5.6.

Lemma 5.4: Assuming that IP-1 and IP-2 hold, there exists a path P “ xo`, t, . . . , o´r y P
Gf̂

ext in Line 5.

40

Algorithm 5.1: Decompose
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

Solution px̂, f̂q P FIP to IP-A-CVSAP
Output: Feasible Virtual Arborescence T̂G for CVSAP

1 set Ŝ fi ts P S|xs ě 1u and T̂ fi T

2 set T̂G fi pV̂T , ÊT , r, π̂q where V̂T fi tru Y Ŝ Y T̂ , ÊT fiH and π̂ : ÊT Ñ PG

3 while T̂ ‰ H do
4 let t P T̂ and T̂ Ð T̂ ´ t

5 choose P fi xo`, t, . . . , o´r y P G
f̂
ext

6 for j “ 1 to |P | ´ 1 do
7 set f̂pPj, Pj`1q Ð f̂pPj, Pj`1q ´ 1

8 if Constraint IP-2 is violated with respect to f̂ and Ŝ then
9 choose W Ď VG such that W X Ŝ ‰ H and f̂pδ`

ER
ext
pW qq “ 0

10 choose P 1 fi xPj, . . . , o´S y P G
f̂
ext such that Pi P W for 1 ď i ă m

11 set f̂pPj, Pj`1q Ð f̂pPj, Pj`1q ` 1 and f̂pP 11, P 12q Ð f̂pP 11, P
1
2q ´ 1

12 set P Ð xP1, . . . , Pj´1, Pj “ P 11, P
1
2, . . . , P

1
my

13 end
14 end
15 if P|P | “ o´S and f̂pP|P |´1, P|P |q “ 0 then
16 set Ŝ Ð Ŝ ´ P|P |´1 and x̂pP|P |´1q Ð 0 and T̂ Ð T̂ ` P|P |´1

17 end
18 set ÊT Ð ÊT ` pt, P|P |´1q and π̂pt, P|P |´1q fi simplify(xP2, . . . , P|P |´1y)
19 end
20 return T̂G

Proof: Note that initially (i.e. in Line 1) f̂po`, vq “ 1 holds for v P Ŝ Y T̂ by IP-8 and
IP-9. This flow will only be reduced once, as a node t P T̂ will only be handled once when
it is removed from T̂ in Line 4, and similarly, a node s P Ŝ will only be moved once into T̂
in Line 16. By flow conservation (see IP-1), there must exist a path from t to either o´r or
o´S . However, as we assume IP-2 to hold, there exists a path from each s P Ŝ to o´r and we
conclude that such a path P “ xo`, t, . . . , o´r y P G

f̂
ext must exist. �

Lemma 5.5: Assuming that IP-1 has held in Line 5, fpδ`Eext
pvqq ´ fpδ´Eext

pvqq “ δv,Pj`1

holds for all v P VG during construction of P (Lines 8-13), where δx,y P t0, 1u and δx,y “ 1
iff. x “ y.

Proof: We prove this statement by an inductive argument assuming for now that choose oper-
ations in Lines 9 and 10 are well-defined.

After the first execution of Line 7, fpδ`Eext
pP2 “ tqq ´ fpδ´Eext

pP2 “ tqq “ 1 holds, while
for no other node v P VG flow on adjacent edges were changed, and therefore fpδ`Eext

pvqq ´

41

fpδ´Eext
pvqq “ 1 holds. Furthermore, the reduction of flow on edge po`, P2 “ tq cannot violate

IP-2, such that our claim holds until Line 13 and therefore for the base case j “ 1.
Assuming that fpδ`Eext

pvqq´ fpδ´Eext
pvqq “ δv,Pj`1

has held for j “ n, it is easy to check that
it will continue to hold for j1 “ n` 1, as either in Line 7 or in Line 11 the outgoing flow from
node Pj1 towards node Pj1`1 is reduced such that fpδ`Eext

pvqq ´ fpδ´Eext
pvqq “ δv,Pj1`1

indeed
holds for all v P VG. �

Lemma 5.6: Assuming that connectivity inequalities IP-2 have held before executing Line 7,
these inequalities will hold again at Line 13.

Proof: We only have to consider the case in which the Constraint IP-2 was violated after
executing Line 7. Assume therefore that IP-2 is violated in Line 8. The choose operation in
Line 9 is well-defined, as IP-2 is violated. Let W Ď VG be any violated set with Ŝ XW ‰ H.
To prove this lemma, we prove the following four statements:

(a) Pj is contained in W while Pj`1 is not contained in W .

(b) f̂pPj, Pj`1q “ 0 holds in Lines 9-10.

(c) Before flow reduction in Line 7, there existed a path
P 2 “ xs, . . . , Pj, Pj`1, . . . , o´r y P G

f̂
ext for s P Ŝ XW .

(d) There exists a path P 1 “ xPj, . . . , o´S y with P 1i P W for 1 ď i ă |P 1| in Gf̂
ext.

Considering (a), note that edge pPj, Pj`1q is by definition only included in δ`Eext
pW q if Pj P

W and Pj R W . Thus, assuming that either Pj is not contained in W or assuming that
Pj`1 is contained in W , we can conclude that edge pPj, Pj`1q is not contained in δ`Eext

pW q.
However, in this case the connectivity inequality IP-2 must have been violated even before
flow was reduced. This contradicts our assumption that connectivity inequalities IP-2 have
held beforehand, therefore proving (a).

The correctness of (b) directly follows from (a), as by (a) pPj, Pj`1q P δ
`
Eext
pW q holds. As

f̂pδ`Eext
pW qq “ 0 holds by definition of W and flow may not be negative, we derive the second

statement.
We now prove the statement (c). As connectivity inequalities IP-2 are assumed to have held

before the flow reduction in Line 7, for each activated Steiner node s P Ŝ there existed a path
from s to o´r in Gf̂

ext. By the second statement, pPj, Pj`1q is the only edge in Gf̂
ext leaving W

showing that indeed a path P 2 “ xs, . . . , v, Pj, Pj`1, . . . , o´r y P G
f̂
ext for s P Ŝ existed before

reduction of flow on pPj, Pj`1q.
By statement (c), the prefix xs, . . . , Pjy of path P 2 still exists in Gf̂

ext inducing that Pj is
reached by a positive flow. By Lemma 5.5 flow conservation holds for all nodes w P W , since
by statement (a) Pj`1 is not included in W . As o´r is not included in W , there must exist a
path P 1 “ xPj, . . . , o´S y P G

f̂
ext with Pi P W for 1 ď i ă m. This shows the fourth statement

(d) and shows that the choose operation in Line 10 is well-defined.
We will now prove the main statement of this lemma, namely that in Line 13 the connec-

tivity inequalities IP-2 hold (again). In Line 11, the flow along edge pPj, Pj`1q is incremented

42

again. Assume for the sake of contradiction, that the reduction of flow along pP 11, P
1
2q violates

a connectivity inequality with node set W 1 such that f̂pδ`Eext
pW 1qq “ 0 holds. By the same

argument as used for proving statement (a), it is easy to see that P 11 P W
1 and P 12 R W

1 must
hold. However, by statement (c), after having reverted the flow reduction along pPj, Pj`1q, the
path xPj, Pj`1, . . . , o´r y was re-established in Gf̂

ext. As flow along any of the edges contained
in this path is greater or equal to one, W 1 cannot possibly violate IP-2 and contain Pj P W

1 as
the super sink for the root o´r R W

1 Ď VG may never be contained in W 1. �

Using the above lemma, we can now prove Theorem 5.3.
Proof (Theorem 5.3): Assume that the constraints of IP-A-CVSAP hold with respect to Ŝ, T̂ , f̂ , x̂
before executing Line 4. By Lemma 5.4 the choose operation in Line 5 is well-defined as IP-1
and IP-2 hold by our assumption. By Lemma 5.6 the path construction process in Lines 7
through 13 is well-defined as initially IP-2 holds. The execution of Lines 4-18 is therefore
well-defined.

To distinguish the state of the variables Ŝ, T̂ , f̂ , x̂ at Lines 4 and 18 we will use primed
variables Ŝ 1, T̂ 1, f̂ 1, x̂1 to denote the latter state. First note that IP-1 holds by Lemma 5.5: As
path P must terminate in either o´S or o´r (see Lines 5,10), Lemma 5.5 reduces to fpδ`Eext

pvqq´
fpδ´Eext

pvqq “ 0 for all v P VG for j “ |P | ´ 1 as neither of the super sinks are included in
VG. The connectivity inequalities IP-2 will also hold with respect to Ŝ 1 and f̂ 1 as these are
preserved by Lemma 5.6 and Ŝ 1 Ď Ŝ holds. Constraint IP-9 holds with respect to Ŝ 1 as Ŝ 1 Ď Ŝ
and the flow along edges inES`

ext is never reduced. As similarly flow along edges inET`

ext is only
reduced for the terminal being connected, Constraint IP-8 could only be violated by a node
satisfying t1 P T̂ 1 but t R T̂ . If such a node exists, then it must have been added in Line 16 and
as IP-9 has held for Ŝ, constraint IP-3‹ will hold for t1 P Ŝ X T̂ 1. Analogously, constraint IP-5
is not violated as setting x̂psq to zero for s P Ŝ implies that s R Ŝ 1 (see Line 16). Constraint
IP-4‹ holds for Ŝ 1 as the variable x̂psq is set to zero whenever the flow along an edge ps, o´S q
is reduced to zero. Lastly, it is easy to observe that the capacity constraints IP-5, IP-7 cannot
be violated as the flow is only reduced. �

Using Theorem 5.3 we can now prove that Algorithm Decompose terminates.
Theorem 5.7

Algorithm Decompose terminates.

Proof: By iteratively applying Theorem 5.3 the choose operations of Algorithm Decompose
are well-defined. Note that by construction of the path |P | (see Lines 5,10) flow variables
which values are decremented must have been greater or equal to one before the reduction
took place. Since the flow f̂ P Zě0 is finite and is successively reduced during the process
of path construction, the inner loop (see Lines 6-14) must terminate. The outer loop must
eventually terminate as well, because each node in T̂ (see Line 4) is handled exactly once and
as a node s P Ŝ may be only moved only once into T̂ (see Line 16). �

Using Theorem 5.3 and 5.7 we can finally prove that Algorithm Decompose indeed con-
structs a feasible solution for A-CVSAP.

43

Theorem 5.8

Algorithm Decompose constructs a feasible solution T̂G P FA-CVSAP for A-CVSAP given
a solution px̂, f̂q P FIP. Additionally, CCVSAPpT̂Gq ď CIPpx̂, f̂q holds.

Proof: To show that for T̂G constructed by Algorithm Decompose T̂G P FM-CVSAP holds, we
need to check CVSAP-1-CVSAP-5 as well as VA-1 and VA-2.We first give short arguments
why in fact the conditions CVSAP-1-CVSAP-5 hold:

CVSAP-1 This constraint naturally holds due to Line 2.
CVSAP-2 Algorithm Decompose does not allow for connecting nodes to terminals.

Thereby terminals are indeed leaves in T̂G and CVSAP-2 holds.
CVSAP-3 Each time another node is connected to the root r the flow along pr, o´r q is

decremented (see IP-6). As the flow along this edge is bounded by ur, the
degree constraint CVSAP-3 is satisfied by T̂G

CVSAP-4 An analogue argument as for CVSAP-3 applies.
CVSAP-5 As paths are constructed according to the flow variables f̂ that initially respect

capacity constraints on edges IP-7, and as f̂ is appropriately reduced on used
edges, T̂G satisfies the edge capacity constraint CVSAP-5.

It remains to prove that T̂G satisfies the conditions VA-1 and VA-2 given by in Definition 2.2.
As VA-1 follows directly from Line 18, we show consider VA-2 next.

First note that T̂ “ H holds when Decompose terminates. We prove that Ŝ “ H equally
holds, thereby showing that each node in V̂T ztru is connected to another node in V̂T in Line 15.
Assume that Ŝ ‰ H but T̂ “ H holds. We show that this can never be the case using
the invariant s P Ŝ ñ f̂ps, o´S q ě 1 which directly follows from Theorem 5.3 as IP-4‹

holds. As this holds for all Steiner nodes, f̂pδ`
ES´

ext
pŜqq ě |Ŝ| follows. On the other hand, the

amount of flow emitted by o` equals |Ŝ| as we assume T̂ “ H to hold and by Theorem 5.3
the constraints IP-9 and IP-8 must hold. Due to the flow conservation constraint IP-1, this
implies f̂pr, o´r q ď 0 which immediately violates Constraint IP-2 by considering the node set
W “ VG. As this contradicts the statement of Theorem 5.3, we conclude that Ŝ “ T̂ “ H
must hold when terminating, implying that for all included nodes (see Line 2) an edge was
introduced in ÊT (see Line 18).

As each node (except for the root) has one outgoing edge, it remains to show that T̂G does
not contain cycles. This follows immediately from the order in which nodes are extracted from
T̂ . This order in fact defines a topological ordering on V̂T as a cycle containing nodes u and v
would imply that u was connected before v and vice versa, that v was connected before u. As
this can never be the case, this concludes the proof that T̂G P FA-CVSAP holds.

Lastly, CCVSAPpT̂Gq ď CIPpx̂, f̂q is valid as costs associated with activating Steiner nodes are
incurred in both objectives and Decompose uses only edges already accounted for inCIPpx̂, f̂q.
In fact CCVSAPpT̂Gq ă CIPpx̂, f̂qmay only be the case if the function simplify (see Line 18)
truncated a path. �

44

To prove that our formulation IP-A-CVSAP indeed computes an optimal solution, we need
the following lemma showing that each solution to A-CVSAP can be mapped on a solution of
IP-A-CVSAP with equal cost:

Lemma 5.9: Given a network G “ pVG, EG, cE, uEq, a request RG “ pr, S, T, ur, cS, uSq
and a feasible solution T̂G “ pV̂T , ÊT , r, π̂q to the corresponding A-CVSAP. There exists a
solution px̂, f̂q P FIP with CCVSAPpT̂Gq “ CIPpx̂, f̂q.

Proof: We define the solution px̂, f̂q P t0, 1uS ˆ ZEext
ě0 in the following way

• x̂s “ 1 iff. s P V̂T for all s P S,

• f̂e fi |pπ̂pÊT qqres| for all e P EG,

• f̂e “ 1 if v P V̂T ztru for all e “ po`, vq P ES`

ext Y E
T`

ext and f̂e “ 0 otherwise,

• f̂e fi δ´
ÊT
psq for all e “ ps, o´S q P E

S´

ext and f̂pr, o´r q fi δ´
ÊT
prq.

Checking that px̂, f̂q P FIP and CCVSAPpT̂Gq “ CIPpx̂, f̂q holds is straightforward. �

Finally, we can now prove that VirtuCast solves CVSAP to optimality.
Theorem 5.10: Algorithm VirtuCast solves A-CVSAP to optimality.

Algorithm VirtuCast, that first computes an optimal solution to IP-A-CVSAP and then
applies Decompose, solves A-CVSAP to optimality.

Proof: We use IP-A-CVSAP to compute an optimal solution px̂, f̂q P FIP and afterwards
construct the corresponding T̂G P FA-CVSAP via Decompose. Assume for the sake of deriving
a contradiction that T̂G is not optimal and there exists T̃ P FA-CVSAP with CCVSAPpT̃ q ă
CCVSAPpT̂Gq. By Lemma 5.9 any solution for A-CVSAP can be mapped on a feasible solution
of IP-A-CVSAP of the same objective value. This contradicts the optimality of px̂, f̂q P FIP

and T̂G must therefore be optimal. �

5.3. Runtime Analysis for Decompose
We conclude our discussion of VirtucCast with stating that each choose operation in De-
compose and checking whether connectivity inequalities IP-2 hold can be implemented using
depth-first search. Implementing Decompose in this way and assuming that an optimal solu-
tion for IP-A-CVSAP is given and that G does not contain zero-cost cycles, we can bound the
runtime from above as follows.
Theorem 5.11

Using depth-first search for choosing paths in Algorithm IP-A-CVSAP and for deter-
mining whether connectivity inequalities IP-2 are violated, we can bound the runtime by
O p|VG|2 ¨ |EG| ¨ p|VG| ` |EG|qq, given an optimal solution px̂, f̂q P FIP and assuming that
graph G does not contain zero-cost cycles.

45

Proof: We use depth-first search to separate the connectivity inequalities IP-2 in a canonical
manner which we only explain briefly. Given an activated Steiner node s P Ŝ, we compute
the set of all reachable nodes R via depth-first search. If o´r is contained in R, then no set of
nodes W Ď VG containing s can violate IP-2. On the other hand, if o´r is not contained in R,
then obviously W fi R violates IP-2. Checking the connectivity inequalities in Line 8 can
therefore be performed in time Op|Ŝ| ¨ p|Vext| ` |Eext|qq. The runtime for choosing a path in
Line 10 is clearly dominated by the runtime for checking the connectivity inequalities, and as
the previous depth-first search provides a node set W , we do not consider these operations.

The length of any used path P is bounded by |Eext| as otherwise P would contain a cycle
with positive cost. As this cycle can be removed (see function simplify in Line 18) yielding
a better objective value while remaining feasible, this may never occur by the assumption that
our solution is optimal.

Thus, the runtime for the inner loop (Lines 6-14) amounts toOp|Eext| ¨ |Ŝ| ¨ p|Vext| ` |Eext|qq

Lastly, the outer loop is performed at most |Ŝ| ` |T̂ | many times and the runtime for choosing
path P in Line 5 is clearly dominated by the runtime of the inner loop. As |Eext| P ΘpEGq

(assuming EG to be connected), |Vext| P ΘpEGq and |Ŝ| ` |T̂ | P ΘpVGq holds, the runtime
of Decompose is bounded by

O
`

|VG|
2
¨ |EG| ¨ p|VG| ` |EG|q

˘

and our claim follows. �

As the above theorem only holds for optimal solutions and graphs that do not contain zero-
cost cycles, we shortly argue that the runtime of Algorithm Decompose is still polynomial in
the general case.

Lemma 5.12: (Polynomial runtime of Algorithm Decompose) Even if the solution is not
optimal and the graph contains zero-cost cycles, the runtime of Algorithm Decompose is still
polynomial.

Proof: Without loss of generality, we can assume that uEpeq ď |VG| holds for all e P EG

as each node of VG will be connected at most to a single other node. As paths of the virtual
arborescence are defined to be simple, bounding the edge capacities in this way from above,
still allows each node to use each edge on its path once.

In each iteration of the inner loop of Algorithm Decompose, the flow is either reduced
in Line 7 or in Line 11. Therefore, and as an edge with flow value 0 will never be used
in a path as paths are computed in Gf̂

ext, the Lines 7 - 13 are at most executed |VG| ¨ |EG|

times. As the runtime of the inner loop dominates the runtime of the residual algorithm,
Algorithm Decompose has a polynomial runtime even if the input solution is not optimal and
the graph G contains zero-cost cycles. �

5.4. Implementation
We have implemented VirtuCast based on IP-A-CVSAP and Decompose. The implementation
can be obtained from [RS13a]. Our solver uses SCIP [Ach09] as underlying branch-and-cut

46

framework with CPLEX [CPL13] as LP solver. Due to space constraints, we will not detail the
inner workings of SCIP or general branch-and-bound algorithms but note that the dissertation
of Achterberg [Ach07] provides a thorough introduction to these topics.

We therefore constrain our discussion to the customizations made to the SCIP framework.
In Section 5.4.1 the implementation of separation procedures for Constraints IP-2 and IP-
3‹ is shortly outlined. Section 5.4.2 details our general adaptions to the employed branching
schemes and shortly outlines a custom branching scheme that will be used in the computational
evaluation.

5.4.1. Separation
Our solver generally follows the comprehensive work by Koch et al. [KM98] and we assume
the reader’s familiarity with separation procedures (see e.g. [Sch98]). As the separation tech-
niques used are well-known, we only sketch the most important features.

Instead of using a sophisticated maximal flow algorithm as [KM98] proposes, we imple-
mented the algorithm of Edmonds and Karp (see e.g. [AMO93]). As choosing this simple
algorithm only allows for constructing s´ t flows, we perform a single maximal flow compu-
tation for each s P S when separating connectivity inequalities IP-2 and analogously perform
|T | many maximal flow computations when the valid inequalities of IP-3‹ are to be separated.
To improve performance for executing the maximal flow computations at each node, we use
multithreading to speed up the computation.

Furthermore, we have implemented techniques that can (empirically) improve the quality
of found violated inequalities for IP-2 or IP-3‹. Following [KM98] we implemented the tech-
niques of creep-flow and nested cuts. Creep-flow places a minimal amount of flow on edges
even when they are not used at all, such that edges without flow on it will not automatically
be placed in cuts. Nested cuts on the other hand is a technique to obtain multiple cuts within
a single separation round. If a valid cut was found, the flow on edges of the cut is set to 1 and
a new cut is searched for. As the previous maximum flow computationc an be used to find
the new cuts, i.e. the algorithm can be warm started, and the computational cost for finding
further cuts is comparatively small.

We opted not to implement back cuts, as in our formulation of IP-2 violated node sets with
respect to a given Steiner site s P S would probably be violated for other Steiner sites too.
Adding back cuts for each of the violated node sets with respect to many s P S would in turn
probably lead to many redundant constraints.

In Section 11 the impact of creep-flow, nested cuts and the separation of terminal connec-
tivity inequalities is investigated.

5.4.2. Branching
Branching procedures decide in which way a problem shall be splitted into (disjoint) subprob-
lems by creating several nodes in the branch-and-bound tree and changing some variables’
upper or lower bounds. If branching is applied to a single binary variable, the variable will be
set to zero in one child and to one in the other.

47

As a general decision that applies to all branching schemes, we assign higher priorities
to Steiner site opening variables x P t0, 1u than to flow variables fe P Zě0. Therefore, all
branching schemes will first apply branching rules on Steiner site opening variables. While we
only validated this decision as part of the first (undocumented) experimentations, the reasoning
behind this is convincing:

1. Costs associated with Steiner sites are generally much higher than costs of edges. Ac-
tivating a Steiner site is therefore more likely to yield an objective value that is larger
than the primal bound, such that this node can be cut off.

2. On the other hand, disabling a Steiner site s P S by fixing xs “ 0 is more likely to yield
an infeasible solution, as formerly absorbed flow needs to be rerouted.

3. Generally, only after having fixed all Steiner site opening variables, the amount of flow
emitted from the super source o` into the network is fixed.

We have also implemented an own branching scheme, that is introduced in Definition 5.13.
The underlying idea is to first branch on Steiner sites that maximally contribute to the objective
and then to branch on edge variables that maximize the distance to the nearest lower integer.

Definition 5.13: GREEDY BRANCHING RULE

Given a fractional solution px̂, f̂q P FLP, the greedy branching rule operates as follows.

1. If a fractional Steiner site variable exists, branch on s P S with x̂s P p0, 1q maxi-
mizing cSpsq ¨ x̂s.

2. If no fractional Steiner site variable exists, branch on the edge e P Eext maximizing
f̂e´ tf̂eu, by creating two childs with additional constraints f̂e ď tf̂eu and f̂e ě rf̂es
respectively.

48

Part III.

Heuristics for CVSAP

6. Overview and Common Algorithms

In Part II, two exact algorithms based on Integer Programming (IP) have been proposed to
solve CVSAP. Employing branch-and-bound (or branch-and-cut) techniques (see [Sch98] for
an introduction), the proposed IP formulations can be solved by solvers as CPLEX [CPL13]
or SCIP [Ach09] to optimality in non-polynomial time. To obtain feasible solutions in polyno-
mial time, IP solvers employ general and problem-specific heuristics [Ach09]. While finding
feasible solutions within reasonable time with an guarantee on its quality is the top-most ob-
jective, finding good solutions also allow to speed-up the solution process, as will be discussed
below.

Determining an optimal solution (or proving that none exists) is guaranteed by systemati-
cally exploring the whole solution space via branching procedures that subdivide the solution
space. However, while branching reduces the solution space, the number of (reduced) prob-
lems spawned increases exponentially. To efficiently solve IPs, bounding procedures are em-
ployed. Given a subproblem, a dual bound is computed that bounds the best possible solution
value by considering a relaxation of the problem that can be solved in polynomial time. In
our case the relaxation employed is the linear one that is obtained by relaxing the integrality
of variables. Given a feasible (primal) solution to the overall problem, the primal bound is
defined by the (best) solution’s objective. Clearly, if the dual bound of a subproblem is worse
than the primal bound, then the corresponding solution space does not need to be considered
and can be cut off, thereby potentially reducing the search space significantly.

As the heuristics built into the SCIP framework often fail to produce high-quality solu-
tions (see Section 14.3) we propose several heuristics to (try to) obtain feasible solutions for
CVSAP. With one exception, all proposed heuristics rely on the formulation IP-A-CVSAP and
the ability to solve it quickly (see Section 8). We furthermore initiate the study of combinato-
rial heuristics by introducing the IP-independent heuristic GreedySelect which is presented in
Section 7.

Before presenting the heuristics in Sections 7 and 8, first notations related to standard algo-
rithms employed are defined in Section 6.1. In Section 6.2 a polynomial local search procedure
will be introduced to improve the objective value of a feasible virtual arborescence by pruning
active Steiner nodes.

6.1. Employed Known Algorithms and Definitions
The heuristics presented in Sections 8 and 7 will make use of both shortest paths and minimum-
cost flow algorithms. As these algorithms are well-known [KV12] we only define their inter-
face, i.e. their inputs and outputs. At the end of this section we will also define the notion of
partial virtual arborescences.

50

Definition 6.1: FUNCTION ShortestPathpG, c, s,Dq
Input: Directed network G “ pVG, EG, cEq with edge costs cE : EG Ñ Rě0, a start

node s P VG and a set of destinationsH ‰ D Ď VG.

Output: Directed path P “ xP1, P2, ..., Pny, such that P1 “ s and Pn P D holds
and its cost cEpP q fi

řn´1
i“1 cEpPi, Pi`1q is minimal or null if no such path

exists.

Remark 6.2 (Runtime of ShortestPath [KV12]). A shortest path can be computed in time
Op|EG| ` |VG| log |VG|q by using Dijkstra’s algorithm.

As a simple extension, of ShortestPath, we will use MinAllShortestPath to
compute the shortest path between a pair of sets of nodes.

Definition 6.3: FUNCTION MinAllShortestPathpG, c,S,Dq
Input: Directed network G “ pVG, EG, cEq with edge costs cE : EG Ñ Rě0, a set

of start nodes S Ď VG and a set of destinationsH ‰ D Ď VG.

Output: Directed path P “ xP1, P2, ..., Pny, such that P1 P S and Pn P D holds
and its cost cEpP q fi

řn´1
i“1 cEpPi, Pi`1q is minimal or null if no such path

exists.

Remark 6.4 (Runtime of MinAllShortestPath). The problem of finding the shortest path
between two sets of nodes can be reduced to a single shortest path computation: introduce two
additional nodes of whom the first connects to all nodes in S and all nodes ofD connect to the
second one and compute a shortest path from the first to the second node.

Definition 6.5: FUNCTION MinCostFlowpG, cE, uE, v, s,Dq
Input: Directed networkG “ pVG, EGqwith edge costs cE : EG Ñ Rě0 and integral

capacities uE : EG Ñ N, a start node s P VG, a set of destinationsH ‰ D Ď
VG and the flow value v P Ną0 that shall be achieved.

Output: Set of paths Γ “ tpPi, fiqu P PGˆNą0 with a value fi specifying the amount
of flow carried by it, such that

a) Pi starts in t and ends at some node of D,

b) the decomposition does not violate capacities, i.e.
ř

ePPi
fi ď uEpeq

holds for all edges e P EG, and

c) the decomposition has value v, i.e.
ř

fi “ v holds and

d) the cost of the decomposition cEpΓq fi
ř

pPi,fiqPΓ
fi ¨ cEpPiq is minimal.

If no flow (decomposition) Γ of value v exists, thenH is returned.

51

The following remark establishes the polynomial runtime of MinCostFlow.

Remark 6.6 (Runtime of MinCostFlow, [KV12]). By using the successive shortest paths al-
gorithm for computing a mininmal cost flow and decomposing it afterwards using e.g. breadth-
first search, Op|VG| ¨ |EG| ` vp|EG| ` |VG| log |VG|qq is an upper bound on the runtime of
MinCostFlow.

We will also make use of the following algorithm to solve a minimum-cost assignment
problem.

Definition 6.7: FUNCTION MinCostAssignmentpG, cE, uE, uV ,S,Dq
Input: Directed networkG “ pVG, EGqwith edge costs cE : EG Ñ Rě0 and integral

capacities on edges uE : EG Ñ N and end nodes uD : D Ñ N, a set of nodes
that shall be connected S Ă VG and a set of destinationsH ‰ D Ď VG.

Output: Set of paths Γ “ tP s|s P Su P PG, such that

a) Ps starts in s and ends at some node of d,
b) paths do not violate edge capacities, i.e. |tP s|P s P Γ, e P Psu| ď uEpeq

holds for all edges e P EG, and

c) paths do not violate node capacities, i.e. |tP s|P s P Γ, P s ends in du| ď
uDpdq for all destinations d P D,

d) the cost of the decomposition cEpΓq fi
ř

P sPΓ cEpP
sq is minimal.

If no such assignment existsH is returned.

By a simple construction MinCostAssignment can be reduced to solving a minimum-
cost flow problem by introducing two additional nodes and connecting them to S and D re-
spectively (see Remark 6.4). By defining the capacity of new edges towards S to be one and
by defining the capacity of new edges leaving D to be equal to the nodes capacity, the prob-
lem can be easily reduced onto a minimum-cost flow computation of value |S|. We therefore
obtain the following remark.

Remark 6.8 (Runtime of MinCostAssignment). As S Ă VG holds the runtime of Algo-
rithm MinCostAssignment is bounded by Op|VG| ¨ |EG| ` |VG|

2 log |VG|q via the above
described reduction to a minimum-cost flow problem.

52

6.2. Local Search Procedure PruneSteinerNodes ›

In this section the Algorithm PruneSteinerNodes (see Algorithm 6.1) is introduced. Algo-
rithm PruneSteinerNodes iteratively tries to remove the active Steiner node which has the
worst ratio of installation costs divided by the number of incoming connections. Having
removed the Steiner node and its connection, some nodes, including Steiner nodes, are un-
connected. To reconnect these nodes we iteratively compute shortest paths towards active
Steiner nodes (or the root) with remaining node capacity. Importantly, when reconnecting an
active Steiner node, only shortest paths are considered which do not yield a cycle in the virtual
arborescence.

In the following, we explain the algorithm’s implementation. Initially, the activated Steiner
nodes are put in the set O (see Line 1). According to the ratio of cost for installing it divided
by the number of nodes connected to it, the Steiner node maximizing this ratio is selected
(see Line 3). Together with all its incoming and outgoing edges, it is removed from the so-
lution, yielding a (temporarily infeasible) solution pV̂ 1T , Ê

1
T , r, π̂

1q and the remaining capacity
u1 : Eext Ñ N (see Lines 9 to 12). By removing paths and disabling the Steiner node, the ob-
jective value of the virtual arborescence is decreased, giving an budget b for reconnecting the
disconnected nodes (see Line 8). Reconnecting the disconnected nodes is done using shortest
paths under the constraint that no cycles may be introduced to the solution (see Lines 13 to
20). This constraint can be easily realised by first computing all active Steiner nodes that are in
the same connected component as the (Steiner) node that needs to be connected and removing
these edges when computing the shortest path.

If a node cannot be connected or using the shortest path would exceed the budget (see
Line 15), the algorithm selects another activated Steiner node, if possible (see Line 16). If
however all nodes could be reconnected and the budget was not exceeded, then a cheaper
feasible virtual arborescence has been found and the process is restarted with all opened ag-
gregation nodes (see Lines 21 and 22). We conclude by shortly showing the polynomial
runtime of Algorithm PruneSteinerNodes.
Theorem 6.9: Polynomial runtime of Algorithm PruneSteinerNodes.

The runtime of Algorithm PruneSteinerNodes is bounded byOp|VG|2¨|EG|`|VG|
3 log |VG|qq.

Proof: First note that the set of opened Steiner nodes O is only recomputed in Line 22, if the
algorithm did not abort when reconncting nodes. Hence one Steiner node was removed. Thus,
the body of the while loop (Lines 3-22) is executed at most |O|2 ď |VG|2 many times.

We now show that between two successul removals of Steiner nodes at most VG many
shortest paths computations were performed. This holds, as each node in v P V̂T is connected
to at most one node v1 P V̂T . Hence, a shortest paths computation from node v is only
triggered if node v1 was removed (temporarily). Therefore, between two successful Steiner
node removals node v1 will only be considered once and maximally |O| ď |V G|many shortest
paths computations are performed between successful Steiner node removals. As only |O| ď
|VG| many nodes can be removed, the overall runtime of Lines 13-20 can be bounded by
Op|VG|2 ¨ p|EG| ` |VG| log |VG|q. As this runtime dominates the runtime of the possibly |VG|2

many executions of Lines 3-12 and the |V G| many executions of Lines 21,22, the theorem

53

follows. �

Algorithm 6.1: PruneSteinerNodes
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

Solution T̂G P FA-CVSAP for A-CVSAP
Output: Feasible Virtual Arborescence T̂ 1G P FA-CVSAP with CCVSAPpT̂ 1Gq ď CCVSAPpT̂Gq

1 set O fi S X V̂T
2 while O ‰ H do
3 choose s P O maximizing cSpsq{|δ

´

ÊT
psq|

4 set O Ð O ´ s
5 set U fi tt|pt, sq P δ´

ÊT
psqu

6 set R fi δ`
ÊT
psq Y δ´

ÊT
psq

7 set PR fi tπ̂peq|e P Ru
8 set b fi cSpsq `

ř

PPPR
cEpP q

9 set V̂ 1T fi V̂T zpU Y tsuq

10 set Ê 1T fi ÊT zpδ
´

ÊT
psq Y δ`

ÊT
psqq and π̂1 : Ê 1T Ñ PG

such that π̂1peq “ π̂peq for all e P Ê 1T

11 set u1peq fi

$

’

’

’

’

&

’

’

’

’

%

uEpeq ´ |π̂pÊ
1
T qres| , if e P EG

urprq ´ |δ
´

Ê1T
prq| , if e “ pr, o´r q

uSpsq ´ |δ
´

Ê1T
ps1q| , if e “ ps1, o´S q P E

S´

ext

1 , else

for all e P Eext

12 set u1ps, o´S q Ð 0
13 for e “ pt, sq P δ´

ÊT
psq do

14 choose P fi ShortestPath
`

Gu1

ext, cE, t, to
´
S , o

´
r u
˘

such that pV̂ 1T ` t, Ê 1T ` pt, P|P |´1qq is acyclic
15 if P “ H_ b´ cEpP q ď 0 then
16 goto 2

17 set bÐ b´ cEpP q

18 set V̂ 1T Ð V̂ 1T ` t

19 set ÊT Ð ÊT ` pt, P|P |´1q and π̂pt, P|P |´1q fi xP1, . . . , P|P |´1y

20 set u1peq Ð u1peq ´ 1 for all e P P

21 set T̂G Ð Virtual Arborescence pV̂ 1T , Ê
1
T , r, π̂

1q

22 set O Ð S X V̂T

23 return T̂G

54

7. Combinatorial Heuristic
GreedySelect

In this section we present a purely combinatorial heuristic for CVSAP that does not rely on lin-
ear programming methods to find solutions. Following an greedy approach Algorithm GreedyS-
elect iteratively connects one or multiple nodes in a single iteration such that the connection
cost per connected node is minimized. We allow for the following types of connections.

1. An unconnected node (either terminal or active Steiner node) may be connected to an
active Steiner node that is already connected to the root or to the root itself, such that
only one node is connected.

2. A single inactive Steiner node can be activated, such that multiple unconnected nodes
(either terminals or active Steiner nodes) can be connected to it. Note that the Steiner
node which is activated, will not be connected.

We associate the following costs with each of the above operations.

1. If only a single node is connected, the cost of this operation is simply the sum of the
edge costs of the path used for connecting the node.

2. If an inactive Steiner node s̄ is activated and a set of unconnected nodes T 1 is connected
to it, the following cost model is applied. For each of the nodes T 1 the costs of their
respective paths to connect to s̄ is added to the installation costs of s̄, yielding the costs
cT 1,s̄. Note that cT 1,s̄ equals the costs that will be introduced into the solution. As node
s̄ will need to be connected later on to the connected component R that raches r, we
denote by cs̄,R the shortest path cost to connect s̄ to R. Lastly, we denote by cT 1,R the
sum of shortest path costs to connect each of the nodes in T 1 to R directly. As this cost
will be avoied, we subtract it, yielding the following cost per connected node

pcT 1,s̄ ` cs̄,R ´ cT 1,Rq {|T
1
| .

In the following we first give a synopsis of Algorithm GreedySelect in Section 7.1 and then
prove the polynomial runtime in Section 7.2.

7.1. Synopsis of Algorithm GreedySelect

In Line 1 the sets S̄, T̄ , Ŝ, T̂ are initialized. The set S̄ will contain inactive and therefore
unconnected Steiner nodes. The set T̄ stores all unconnected Terminals and all activated,

55

Algorithm 7.1: GreedySelect
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq
Output: A Feasible Virtual Arborescence T̂G or null

1 set S̄ fi S, T̄ “ T and T̂ fiH, Ŝ fiH

2 set T̂G fi pV̂T , ÊT , r, π̂q, where V̂T fi tru, ÊT fiH and π̂ : ÊT Ñ PG

3 set upeq fi uEpeq for all e P EG

55 while |T̄ | ą 0 do
6 compute RÐ tr1 P tru Y Ŝ|r1 reaches r in T̂G, δ´T̂Gpr

1q ă ur,Spr
1qu

7 compute Pv,R “ ShortestPathpGu, cE, v, Rq for v P S̄ Y T̄
8 if Pt̄,R “ null for some t̄ P T̄ then
9 return null

10 end
11 set t̂Ð t̄ P T̄ , such that cEpPt̄,Rq ď cEpPt̄1,Rq for all t̄1 P T̄
12 set us̄peq fi upeq ´ |Ps̄res| for all s̄ P S̄, e P EG

13 compute Ps̄ fi ps̄ P S̄, T
1 Ď T̄ ,PT 1 “ tPt,s̄|t P T

1uq,

such that Pt,s̄ connects t to s̄,
us̄peq ´ |PT 1res| ě 0 for all e P EG,

2 ď |T 1| ď ur,Sps̄q

minimizing cs̄,T 1 fi

˜

ÿ

tPT 1

pcEpPt,s̄q ´ cEpPt,Rqq ` cEpPs̄,Rq ` cSps̄q

¸

{|T 1|

14 if Ps̄ ‰ null and cs̄,T 1 ă cEpPt̂,Rq then
15 set T̄ Ð pT̄ ` s̄qzT 1 and S̄ Ð S̄ ´ s̄

16 set V̂T Ð V̂T Y pT
1 ` s̄q

17 set ÊT Ð ÊT ` tpt, s̄q|t P T
1u and π̂pt, s̄q fi Pt,s̄ for all t P T 1

18 else
19 set T̄ Ð T̄ ´ t̂

20 set V̂T Ð V̂T ` t̂, ÊT Ð ÊT ` pt, P|Pt̂|
q and π̂pt, P|Pt̂|

q fi Pt̂ for all t P T 1

21 end
22 end
23 return PruneSteinerNodes (T̂G)

but unconnected, Steiner nodes. The sets Ŝ store the activated and the connected terminals
respectively. As initially no node is connected, capacities u : EG Ñ N are intialized to equal
the original capacities in Line 3. The while loop from Line 5 to Line 22 then tries to connect
nodes as long as the set of unconnected nodes T̄ is not empty.

First the set of nodes R Ď V̂T is computed, such that R contains only the activated Steiner
nodes (or the root r) that are already connected to r. Note that nodes whose (node) capacities
are fully used, are not included in R (see Line 6). Then, a shortest path Pv,R is computed for

56

each inactive Steiner node and each unconnected terminal towards R. The algorithm aborts in
Lines 8-10, if there exists an unconnected terminal that does not have a path towards R. This
abort is necessary, as Algorithm GreedySelect does not perform any path reconfigurations and
can therefore not recover once a terminal has been disconnected from the root.

In Line 11 the unconnected node t̂ P T̄ is selected that has the minimal shortest path towards
R. Note that t̂ may either be a terminal or an active Steiner node. In Line 12 edge capacities
us̄ are computed for each s̄ P S̄, such that the capacity on an edge e is decremented by one if
and only if its shortest path Ps̄,R used edge e.

In the Line 13 the cheapest Steiner node s̄ P S̄ to activate is computed together with a set of
unconnected nodes T 1 and a path Pt,s̄ for each t P T 1 to connect to s̄. We require that the set of
paths PT 1 does not violate the edge capacities us̄, such that node s̄ can still be connected to R
if all paths in PT 1 are established. As the number of subsets T 1 Ă T̄ may be exponential, we
will show in the next section how this computation can be implemented in polynomial time.

If a minimum cost tuple Ps̄ was found such that its cost is below the cost of shortest path
Pt̂,R, then all nodes T 1 are connected to s̄ in Lines 15-17 and s̄ is put into the set of unconnected
nodes T̄ . Otherwise the shortest path Pt̂,R is used to connect t̂ P T̄ in Lines 19 and 20.

Lastly, if the algorithm does not abort in Line 9, in Line 23 the constructed virtual arbores-
cence T̂G is returned after having pruned the solution.

7.2. Runtime of Algorithm GreedySelect
It is easy to check that in Algorithm GreedySelect the number of unconnected terminals T̄ is
at least reduced by one in each iteration: either an unconnected node is directly connected or
multiple unconnected nodes are connected to a single newly unconnected node s̄.

To bound the runtime and show that it is indeed polynomial, we have to prove that the
computation of Ps̄ can be implemented in polynomial time. We show this in the following
lemma.

Lemma 7.1: (Runtime of Line 13) The computation of Ps̄ can be implemented in time
Op|VG| ¨ |EG| ` |VG|

2 log |VG|qq.

Proof: Note first that the costs cEpPs̄,Rq and cSps̄q are independent of the set of connected
terminals T 1. Assume for now that the number of terminals n “ |T 1| to connect is fixed,
and we only consider a single inactive Steiner node s̄ P S̄. We show that this subproblem
can be solved by computing a minimum-cost flow using a similar construction to the one
used for reducing MinCostAssignment to MinCostFlow in Section 6.1: we introduce
a single super source that is connected to the set of nodes t̄ P T̄ with unit capacities and costs
´cEpPt̄,Rq and compute a minimum-cost flow of value n from this super source towards the
fixed inactive Steiner node s. To see that a minimum-cost flow algorithm can be employed on
this network, we have to prove that edge costs are conservative [KV12], i.e. that the extended
network does not contain directed cycles of cost less than 0. As edges with negative costs
only leave the super source, which has no incoming edges, this is immediate. Therefore,
the corresponding minimum-cost flow problem can be solved by using standard successive

57

shortest paths algorithms [KV12]. The advantage of employing a successive shortest paths
algorithm lies in the fact that computing a minimum-cost flow of value ur,S s̄ yields solutions
for |T 1| “ 2, 3, . . . , ur,S s̄ on-the-fly. Therefore, by performing a single successive shortest
path minimum-cost flow computation for each inactive Steiner node, the optimal set can be
found. The runtime of the computation of Ps̄ can therefore (by Remark 6.6) be bounded by
Op|VG| ¨ |EG| ` |VG|

2 log |VG|qq. �

By the above lemma, it is easy to prove the following runtime.
Theorem 7.2: Runtime of Algorithm GreedySelect

Algorithm GreedySelect can be implemented to run in Op|VG|2 ¨ |EG| ` |VG|
3 log |VG|q.

Proof: Note that the runtime of all other operations within the while loop is clearly domi-
nated by the runtime of Line 13. As already observed, the number of unconnected termi-
nals T̄ is reduced in each iteration by at least one. Hence, we obtain the runtime bound of
Op|VG|2 ¨ |EG|` |VG|

3 log |VG|q. As this runtime bound equals the runtime bound of executing
Algorithm PruneSteinerNodes in Line 23 (see Theorem 6.9), the theorem is proven. �

58

8. LP-Based Heuristics
In this section three different types of heuristics are presented for CVSAP that all rely on the
linear relaxation of IP Formulation IP-A-CVSAP and the ability to solve it rather quickly (at
least e.g. in comparison to Formulation A-CVSAP-MCF). The first algorithm presented will
try to construct a solution given a single LP relaxation while the remaining ones will actively
resolve linear relaxations to guide the construction of solutions. There are two main reasons
for studying IP-based heuristics in-depth.

1. Even though SCIP implements more than two dozen general IP-based heuristics, our
computational evaluation has shown that these heuristics may fail to produce even a sin-
gle solution for larger instances (see Section 14.3). We believe that this is mainly due to
the fact that SCIP does not perfom separation procedures for Constraints IP-2 and IP-3‹.
This necessitates the development of heuristics to first and foremost generate feasible
solutions at all, but also to speed up the execution of the branch-and-bound algorithm
on smaller instances. As linear relaxations are computed during the branch-and-bound
search anyway, they can be used to derive information on e.g. which node connects
(fractionally) to which node. The heuristic FlowDecoRound which is presented in Sec-
tion 8.1 e.g. uses the flow values to derive probabilities for connecting nodes. The
heuristics presented in Section 8.6 will utilize the fractional Steiner opening variables
to derive probabilities for activating Steiner nodes.

2. Based on Algorithm Decompose a direct connection between feasible solutions of for-
mulation IP-A-CVSAP and the underlying CVSAP instance (cf. Theorem 5.8) has been
established. Finding feasible solutions to IP-A-CVSAP seems conceptually easier, since
instead of paths only aggregated flow values need to be computed. This is important,
as combinatorial algorithms (that iteratively connect nodes as in Section 7) irrevocably
reduce the links’ capacities during their execution and cannot reconfigure paths (to an
unlimited extent). Especially the diving heuristics presented in Section 8.5 will make
use of the fact that linear relaxations allow for potentially global path reconfigurations,
by simply not considering an explicit path model.

8.1. Heuristic FlowDecoRound ›

Our primal heuristic FlowDecoRound (see Algorithm 8.1) uses the linear relaxation px̂, f̂q P
FLP at the current node in the branch-and-bound tree as input. In the first phase (see Lines 4
to 15) for each terminal a flow decomposition is computed based on the flow values f̂ of the
current LP solution px̂, f̂q P FLP such that the path may either terminate in o´S or o´r . As we
only have defined MinCostFlow on integral flows, we only compute an approximate flow

59

decomposition by scaling flows to integers internally. The flow decomposition returns a set
of paths paired with an amount of flow carried by them. After discarding paths for which no
capacity is left and paths that would lead to a cycle in the solution, one of the remaining paths
is chosen uniformly at random according to the flow amount carried by it. If the path leads to
an (inactive) Steiner site, then the aggregation node is opened and becomes itself a terminal to
be connected during the first phase. If none of the paths returned by the flow decomposition is
feasible, the terminal is not connected.

In the second phase (see Lines 18 to 23) the terminals (including Steiner nodes) that are still
disconnected are connected using shortest paths under the restriction that these paths may not
yield a cycle in the solution.

Lastly, if all terminals (including Steiner nodes) have been connected in the second phase,
a feasible solution was constructed. Since in the first phase any Steiner node is activated
if a path to it was selected, we call Algorithm PruneSteinerNodes to potentially reduce the
objective value. As discussed in Section 12, pruning Steiner nodes can indeed improve the
quality of the found solution significantly.

We lastly consider the runtime of Algorithm FlowDecoRound.
Theorem 8.1: Runtime of Algorithm FlowDecoRound

The runtime of Algorithm FlowDecoRound is bound byOp|VG|2 ¨ |EG| ` |VG|
3 log |VG|q.

Proof: We note that in the first as well as in the second phase maximally VG many nodes are
considered. Within the first phase, the runtime is dominated by the call of MinCostFlow.
As we use an integral flow algorithm, but scale the flow beforehand by a constant, the scaling
constant increases the runtime only upto a constant. The runtime of the first phase is therefore
bounded by Op|VG|2 ¨ |EG| ` |VG| log |VG|q (cf. Remark 6.6).

In the second phase, the runtime is dominated by performing the shortest paths computa-
tion in Line 19 and is therefore bounded by Op|VG| ¨ |EG| ` |VG|

2 log |VG|q (cf. Remark 6.2).
Lastly, the runtime spent in Algorithm PruneSteinerNodes is bound by Op|VG|2 ¨ p|EG| `

|VG| log |VG|qq (see Theorem 6.9). Therefore, the overall runtime of Algorithm FlowDeco-
Round is dominated by the runtime for pruning active Steiner nodes and the theorem fol-
lows. �

60

Algorithm 8.1: FlowDecoRound
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

LP relaxation solution px̂, f̂q P FLP to IP-A-CVSAP
Output: A Feasible Virtual Arborescence T̂G or null

1 set Ŝ fiH and T̂ fiH and U “ T

2 set V̂T fi tru, ÊT fiH and π̂ : ÊT Ñ PG

3 set upeq fi

$

’

’

’

&

’

’

’

%

uEpeq , if e P EG

urprq , if e “ pr, o´r q
uSpsq , if e “ ps, o´S q P E

S´

ext

1 , else

for all e P Eext

4 while U ‰ H do
5 choose t P U uniformly at random and set U Ð U ´ t

6 set Γt fi MinCostFlow
´

Gext, f̂ , f̂po`, tq, t, to´S , o
´
r u

¯

7 set f̂ Ð f̂ ´
ř

pP,fqPΓt,ePP

f

8 set Γt Ð ΓtztpP, fq P Γt|De P P.upeq “ 0u

9 set Γt Ð ΓtztpP, fq P Γt|pV̂T ` t, ÊT ` pt, P|P |´1qq is not acyclic u
10 if Γt ‰ H then
11 choose pP, fq P Γt with probability f{

´

ř

pPj ,fjqPΓt
fj

¯

12 if P|P |´1 R V̂T then
13 set U Ð U ` P|P |´1 and V̂T Ð V̂T ` P|P |´1

14 set V̂T Ð V̂T ` t and ÊT Ð ÊT ` pt, P|P |´1q and π̂pt, P|P |´1q fi P
15 set upeq Ð upeq ´ 1 for all e P P

16 set upeq Ð 0 for all e “ ps, o´S q P ES´

ext with s P S ^ s R V̂T
17 set T̄ fi pT zV̂T q Y pts P S X V̂T |δ

`

ÊT
psq “ 0uq

18 for t P T̄ do
19 choose P Ð ShortestPath

`

Gu
ext, cE, t, to

´
S , o

´
r u
˘

such that pV̂T ` t, ÊT ` pt, P|P |´1qq is acyclic
20 if P “ H then
21 return null

22 set V̂T Ð V̂T ` t and ÊT Ð ÊT ` pt, P|P |´1q and π̂pt, P|P |´1q fi P
23 set upeq Ð upeq ´ 1 for all e P P

24 for e P ÊT do
25 set P fi π̂peq
26 set π̂peq Ð xP1, . . . , P|P |´1y

27 set T̂G fi Virtual Arborescence pV̂T , ÊT , r, π̂q

28 return PruneSteinerNodes(T̂G)

61

8.2. Algorithm PartialDecompose
A major disadvantage of Algorithm FlowDecoRound that was presented in the above sec-
tion is that paths are selected at random without taking into account our theoretical results
on how flow needs to be decomposed (see Section 5.2). Hence, it is rather likely that Algo-
rithm FlowDecoRound disconnects nodes that woubld be connected in an optimal solution.

To alleviate this problem to some extent, we introduce the notion of partial virtual arbores-

Algorithm 8.2: PartialDecompose
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

px̂, f̂q P tpx, fq P t0, 1uS ˆ ZEext
ě0 u

Output: Partial Virtual Arborescence T̂ P
G

1 set Ŝ fi ts P S|xs ě 1u and T̂ fi T

2 set T̂ P
G fi pV̂ P

T , Ê
P
T , r, π̂

P q where V̂ P
T fi tru Y Ŝ Y T̂ , ÊP

T fiH and π̂P : ÊT Ñ PG

3 while T̂ ‰ H do
4 let t P T̂ and T̂ Ð T̂ ´ t

5 choose P fi xo`, t, . . . , o´r y P G
f̂
ext

6 if P “ H then
7 goto 3
8 end
9 for j “ 1 to |P | ´ 1 do

10 set f̂pPj, Pj`1q Ð f̂pPj, Pj`1q ´ 1

11 if Constraint IP-2 is violated with respect to f̂ and Ŝ then
12 choose W Ď VG such that W X Ŝ ‰ H and f̂pδ`

ER
ext
pW qq “ 0

13 choose P 1 fi xPj, . . . , o´S y P G
f̂
ext such that Pi P W for 1 ď i ă m

14 if P 1 “ H then
15 set f̂pPk, Pk`1q Ð f̂pPk, Pk`1q ` 1 for all k P t1, . . . , ju
16 goto 3
17 end
18 set f̂pPj, Pj`1q Ð f̂pPj, Pj`1q ` 1 and f̂pP 11, P 12q Ð f̂pP 11, P

1
2q ´ 1

19 set P Ð xP1, . . . , Pj´1, Pj “ P 11, P
1
2, . . . , P

1
my

20 end
21 end
22 if P|P | “ o´S and f̂pP|P |´1, P|P |q “ 0 then
23 set Ŝ Ð Ŝ ´ P|P |´1 and x̂pP|P |´1q Ð 0 and T̂ Ð T̂ ` P|P |´1

24 end
25 set ÊP

T Ð ÊP
T ` pt, P|P |´1q and π̂P pt, P|P |´1q fi simplify(xP2, . . . , P|P |´1y)

26 end
27 return T̂ P

G

62

cences and give a simple extension of Algoritm Decompose that tries to decompose integral
solutions px̂, f̂q P tpx, fq P t0, 1uS ˆ ZEext

ě0 u as best as possible.

Definition 8.2: PARTIAL VIRTUAL ARBORESCENCE

A partial virtual arborescence T P
G “ pV P

T , E
P
T , r, π

P q is a generalization of virtual ar-
borescences to directed forests, where the connectivity constraint VA-1 of Definition 2.2
is relaxed in the following way. Instead of enforcing VA-1, we only require that there
exist a feasible virtual arborescence TG “ pVT , ET , r, πq, such that V P

T “ VT , EP
T Ď ET

and πpeq fi πP peq for all e P EP
T .

Algorithm PartialDecompose (see Algorithm 8.2) is a simple extension of Algorithm De-
compose (see Algorithm 5.1 in Section 5.2). The only difference to the original algorithm
are the if statements in Lines 6-8 and Lines 14-17 and the different types of the input and the
output.

As we do not require the constraints of IP-A-CVSAP to hold for the input px̂, f̂q, the
choose operations in Lines 5 and in Lines 13 may fail at finding or extending a path, that does
not violate the connectivity of other active Steiner nodes. In case one of these choose opera-
tions fails, the path construction is aborted and all decrementations are revoked. The algorithm
then continues by trying to connect another unconnected terminal.

To see that Algorithm PartialDecompose yields indeed a partial virtual arborescence, it
only needs to be shown that pV̂ P

T , Ê
P
T q is acyclic. This however holds by the same argument

that was used in the proof of Theorem 5.8: a Steiner node is only placed in the set of un-
connected nodes T̂ once, when all its incoming connections have been removed. Therefore
Algorithm PartialDecompose indeed outputs a partial virtual arborescence.

8.3. Algorithm Virtual Capacitated Prim Connect
In this section the Algorithm VCPrimConnect (see Algorithm 8.3) is introduced that tries
to connect a partial virtual arborescence to obtain a feasible solution to the corresponding
CVSAP instance. The algorithm relies on the following important observation:

Observation 8.3: If all active Steiner nodes are connected using fixed paths, then terminals
can be optimally connected using algorithm MinCostAssignment, if such an assignment
exists.

Algorithm VCPrimConnect tries to exploit this fact by first connecting all active Steiner
nodes that are contained in a partial virtual arborescence T P

G and then computing an optimal
assignment of unconnected terminals towards the set of Steiner nodes and the root.

Initially, the set of unconnected nodes U and the set of unconnected Steiner nodes S̄ are
computed (see Lines 1 and 2). In Line 3, local copies of the node set, edge set and of the
function π of the partial virtual arborescence T P

G are created. Next the currently remaining
capacity u : EG Ñ N is computed in Line 4.

63

Algorithm 8.3: VCPrimConnect
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

Partial Virtual Arborescence T P
G “ pV P

T , E
P
T , r, π

P q

Output: Feasible Virtual Arborescence TG “ pVT , ET , r, πq or null

1 set U fi tv|v P V P
T ztru, δ

`

EP
T
pvq “ 0u

2 set S̄ fi U X S
3 set VT fi V P

T , ET fi EP
T and πpu, vq “ πP pu, vq for all pu, vq P ET

4 set upeq fi uEpeq ´ |πpET qres| for all e P EG

5 while S̄ ‰ H do
6 compute RÐ tr1|r P tru Y pVT X Sq, r

1 reaches r in TG, δ´ET
pr1q ă ur,Spr

1qu

7 compute P “ MinAllShortestPathpGu, cE, S̄, Rq
8 if P “ null then
9 return null

10 end
11 set S̄ Ð S̄ ´ P1

12 set ET Ð ET ` pP1, P|P |q and πpP1, P|P |q fi P
13 set upeq Ð upeq ´ 1 for all e P P
14 end
15 set T̄ fi U X T
16 set uV pr1q fi ur,Spr

1q ´ δ´ET
pr1q for all r1 P tru Y pVT X Sq

17 compute Γ “ tP t̄u Ð MinCostAssignmentpG, cE, u, uV , T̄ , tru Y VT X Sq
18 if Γ “ H then
19 return null
20 end
21 set ET Ð ET ` pt, P

t
|P t|
q and πpt, P t

|P t|
q fi P t for all P t P Γ

22 return TG fi pVT , ET , r, πq

Lines 5-14 constitute the first phase of the algorithm, in which Steiner nodes are connected
by a simple adaptation of the algorithm by Prim to compute minimal spanning trees [KV12].
The shortest path from the set of unconnected Steiner nodes to the connected component of
pVT , ET q that contains the root is computed, such that nodes that have no capacity left are
again excluded (see Lines 6 and 7). To shorten notation, we denote by ur,S the extension of
uS on the set tru Y S, such that ur,Sprq “ ur holds. If no such shortest path P exists, then
the algorithm aborts and returns null. However, if the shortest path P exists, it is included
in the solution and the edge capacities are adapted accordingly (see Lines 11-13). Therefore,
if Line 15 is reached, all active Steiner nodes connect to the root r in pVT , ET q.

In Lines 15-21 the unconnected terminals T̄ are connected (if possible) using algorithm
MinCostAssignment. As a preparation for the call to MinCostAssignment, in Line 15
the remaining node capacities are stored in the function uV . If no assignment Γ was found,
then null is returned. Otherwise each unconnected terminal t̄ P T̄ is connected according to
the found path P t̄ P Γ in Line 21 and the feasible virtual arborescence TG is returned.

64

It is obvious that if a solution is returned, Algorithm VCPrimConnect extends a partial
virtual arborescence to a feasible solution and we only shortly prove the polynomial runtime
in the following theorem:
Theorem 8.4: Runtime of Algorithm VCPrimConnect

The runtime of Algorithm VCPrimConnect is bounded byOp|VG| ¨ |EG|`|VG|
2 log |VG|q.

Proof: In the first phase when Steiner nodes are connected, the while loop is executed at
most |S̄| ď |VG| many times. Within the loop the computationally most expensive task is
computing the shortest path in Line 7. As the runtime of computing this shortest path is
bounded by Op|EG| ` |VG| log |VG|q (see Remark 6.4),the runtime of the first is bounded by
Op|VG| ¨ |EG| ` |VG|

2 log |VG|q. As the runtime of the remaining code is dominated by the call
to MinCostAssignment and as the bound of the runtime of MinCostAssignment (see
Remark 6.8) equals the runtime bound obtained for the first phase, the theorem is proven. �

8.4. Abstract Interface to LP Solver
The heuristics presented in Sections 8.5 and 8.6 will actively solve linear relaxations after
having introduced local constraints. We will use the following abstract functions. The func-
tion solveSeparateSolve() solves the LP and then separates the connectivity inequal-
ities IP-2 of IP-A-CVSAP. If violated cuts have been found, these are added to the current
node and the LP is resolved. Note that the separation procedure is only called once such
that only some of the violated connectivity inequalities may have been found. The function
solveSeparateSolve returns the optimal LP solution px̂, f̂q P FLP to the current prob-
lem.

We assume that the solver abstractly provides the following functions to query the solver’s
state. The function infeasibleLP() returns as boolean value whether solving the LP was
aborted due to the LP’s infeasibility. The function objectiveLimit() returns as boolean
value, whether solving the LP was aborted as it was proven that the objective value of the LP is
larger than the primal bound, which is given by the objective value of the best known solution.
As e.g. our diving heuristics presented in Section 8.5 strictly rely on the LP’s solution, these
heuristics abort once the primal bound is exceeded as they will not be able to find a cheaper
solution. On the other hand, for the heuristics presented in Section 8.6 the LP solution value
will not be a dual bound for the solutions constructed. We therefore allow to disable the primal
bound via the function call disableGlobalPrimalBound().

To add local constraints the function addConstraintsLocally(C) will be used, that
takes as input a set C of linear (in)equalities on variables already contained in the current prob-
lem formulation. Note that local constraints only apply during the execution of the respective
heuristics but are not lifted to the general problem formulation when executed as part of a
branch-and-bound solver.

65

8.5. Greedy Diving Heuristics
In this section we present a diving heuristic and two derived heuristics (see [Ach07] for an
introduction to diving heuristics). The common approach taken by diving heuristics is to it-
eratively fix a subset of variables and to recompute the linear relaxation, to obtain an integral
feasible solution. As shown in the computational evaluation, the diving heuristics imple-
mented by SCIP may fail to produce solutions. We believe this to be due to the fact, that in
SCIP’s heuristics no separation procedures for the connectivity inequalities are performed and
as they cannot handle infeasibilities by means other than backtracking.

The diving heuristic presented henceforth will first iteratively fix all Steiner site variables
and then iteratively fix all edge variables, to (try to) obtain a feasible solution px̂, f̂q P FIP.
After each iteration the LP is resolved and connectivity inequalities IP-2 of IP-A-CVSAP are
separated, possibly necessitating the resolving of the LP. As these operations are computation-
ally expensive, our heuristics are designed according to the following principles.

1. To avoid infeasibilities as best as possible, only lower bounds are increased such that
either Steiner nodes are activated or the flow on an edge is increased.

2. Instead of performing backtracking once LP infeasibilities occur, the heuristics try to
use the last feasible solution to construct a solution.

We will now give an overview over Algorithm GreedyDiving and in Section 8.5.2 derive two
other heuristics from it. In Section 8.7 the runtime of all lp-based heuristics will be discussed.

8.5.1. Synopsis of Algorithm GreedyDiving
Algorithm GreedyDiving takes as main input the LP solution of the current node in the branch-
and-bound tree or the root relaxation. Initially all Steiner nodes which are activated less than
1% or more than 99% are fixed to be deactivated or are fixed to be activated respectively (see
Lines 1 and 2). Next the sets 9S, 9E are defined which are used to keep track of the Steiner nodes
whose opening variables are fixed and of the edges whose flow variables have been fixed (see
Line 3).

Within the main loop (starting in Line 4) additional variable fixings will be introduced, after
(re)solving the LP in Line 5. If the LP could not be solved due to infeasibilities (see Line 7),
but all Steiner nodes variables are fixed, the main loop is exited to try to construct a solution in
Lines 31-33. However, if infeasibilities arise before all Steiner site variables are fixed or if the
objective limit was reached, the algorithm aborts by returning null. As we do not perform
backtracking, each linear realaxation’s objective is a lower bound for the solution generated.
Exiting the heuristic as soon as the objective limit is reached, therefore allows to not spent
further time in searching for a better solution that cannot be obtained by this approach.

In Line 10 the local solution variables px̂, f̂q are overwritten by the LP’s last solution, such
that if infeasibilities occured, the last feasible solution will still be stored in px̂, f̂q if the main
loop was left in Line 30. If not all Steiner site variables were fixed, in Lines 12-19 additional
Steiner site variable fixings are introduced. First, all Steiner sites which are activated less than
1% or more than 99% are deactivated or activated. In Lines 17-19 at least a single Steiner site

66

is activated, if previously not all variables were fixed. We opt to open the Steiner site with
the smallest installation costs divided by its opening variable. Therefore, under equal Steiner
costs, the node with that is opened the most will be selected to be opened.

Similarly, if all Steiner site variables were fixed beforehand, in Lines 21-24 local fixings are
applied to edge variables. In contrast to Steiner nodes, we fix edge variables initially only if
they are within 1h of the next integer (see Lines 21-22). If the flow variables of some edges
have not been fixed, the single edge ê whose flow value is closest to its next larger integer is
selected and the corresponding lower bound is introduced (see Lines 26-28).

If 9S “ S and 9E “ Eext holds, the Algorithm GreedyDiving exits the diving (see Lines 30)
after having resolved the LP and stored the solution in px̂, f̂q.

To finally construct a solution, first all unfixed flow variables are simply rounded down (see
Line 31) and the Algorithm PartialDecompose is called to obtain a partial virtual arborescence
T̂ P
G in Line 32. Note that if an integral solution was found, rounding flow variables will have

no effect. Furthermore, if for the found solution px̂, f̂q P FIP holds, then Algorithm PartialDe-
compose will construct indeed a feasible virtual arborescence. If a feasible virtual arbores-
cence was constructed, Algorithm will have no effect and the solution is returned unchanged.

However, in case that Algorithm PartialDecompose did fail to connect all nodes, Algo-
rithm VCPrimConnect will first (try to) connect all unconnected activated Steiner nodes and
then assign still unconnected terminals.

8.5.2. Derived Variants
Since especially fixing all edge variables can be potentially very time consuming, we also
consider the following variant of Algorithm GreedyDiving.

Definition 8.5: ALGORITHM GREEDYSTEINERDIVING

The algorithm SteinerGreedyDiving is the variant of Algorithm GreedyDiving, in which
diving is only performed on Steiner node variables, such that Lines 20-28 are removed
from Algorithm GreedyDiving altogether.

Note that even though algorithm SteinerGreedyDiving does not perform diving on flow
variables, it may obtain an integral solution. In any case, if at least a large fraction of flow
variables was integral, applying Algorithm PartialDecompose can increase the chances that
Algorithm VCPrimConnect can connect all remaining unconnected nodes.

To further reduce the number of LP computations and separation rounds used, we also
consider the following variant of the GreedySteinerDiving algorithm.

Definition 8.6: ALGORITHM FASTGREEDYSTEINERDIVING

The algorithm FastSteinerGreedyDiving is the variant of GreedySteinerDiving, in which
in Line 17 not a single node, but the 5% of the nodes contained in Ŝ are selected and
fixed to be opened, which achieve the best ratio cSpsq{x̂s.

67

Algorithm 8.4: GreedyDiving
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

LP relaxation solution px̂, f̂q P FLP to IP-A-CVSAP
Output: A Feasible Virtual Arborescence T̂G or null

1 set tSu fi ts P S|x̂s ď 0.01u and rSs fi ts P S|x̂s ě 0.99u
2 addConstraintsLocally(txs “ 0|s P tSuu Y txs “ 1|s P rSsuq

3 set 9S fi tSuY rSs and 9E fiH

4 do
5 px̂1, f̂ 1q Ð solveSeparateSolvepq

6 if infeasibleLP() and 9S “ S then
7 break
8 else if infeasibleLP() or objectiveLimit() then
9 return null

10 set px̂, f̂q Ð px̂1, f̂ 1q

11 if 9S ‰ S then
12 set tSu fi ts P S|x̂s ď 0.01u and rSs fi ts P S|x̂s ě 0.99u
13 addConstraintsLocally(txs “ 0|s P tSuu Y txs “ 1|s P rSsu)
14 set 9S Ð 9S Y tSuY rSs

15 set Ŝ fi Sz 9S

16 if Ŝ ‰ H then
17 choose ŝ P Ŝ with cSpŝq{x̂ŝ minimal
18 addConstraintsLocally(txŝ “ 1u)
19 set 9S Ð 9S ` ŝ

20 else if 9E ‰ Eext then
21 set tEu fi te P Eext| |f̂e ´ tf̂eu| ď 0.001u, rEs fi te P Eext| |f̂e ´ rf̂es| ď 0.001u

22 addConstraintsLocally(tfe “ tf̂eu|e P tEuu Y tfe “ rf̂es|e P rEsu

23 set 9E Ð 9E Y tEuY rEs

24 set Ê fi Eextz 9E

25 if Ê ‰ H then
26 choose ê P Ê with rf̂ês´ f̂ê minimal
27 addConstraintsLocally(tf̂ê ě rf̂êsu)
28 set 9E Ð 9E ` ê

29 else
30 break

31 set f̂e Ð tf̂eu for all e P Eextz 9E

32 set T̂ P
G Ð PartialDecompose (G,RG, px̂, f̂q)

33 return VCPrimConnect(G,RG, T̂ P
G)

68

It must be noted that we have chosen the bound of 5% rather arbitrarily. Of importance as
a design decision is to relate the number of nodes to activate to the number of unfixed Steiner
nodes. Since the number of Steiner nodes decreases in each iteration, initially more Steiner
nodes will be opened than in later iterations, such that with each iteration the selection process
becomes more selective.

8.6. Multiple Shots Heuristics
The heuristics presented in the above section require all Steiner site variables to be fixed to
obtain a solution. To circumvent this and to obtain solutions faster, we present the Algo-
rithm MultipleShots which interprets Steiner site opening variables as probabilities, opens
Steiner sites according to these probabilities, and tries to construct a solution by only using
the selected Steiner nodes. This procedure is iterated and combined with resolving the LP and
separating inequalities to obtain accurate ‘probabilities’ in each iteration.

The next section provides a detailed synopsis of Algorithm MultipleShots and in Sec-
tion 8.6.2 a simple variant will be derived.

8.6.1. Synopsis of Algorithm MultipleShots
As in Algorithm GreedyDiving initially all nodes that either activated less than 1% or more
than 99% are activated. The algorithm will keep track of the Steiner nodes that have been
activated (set 9S1) as well as of the Steiner nodes that have been deactivated (set 9S0); these sets
are initialized in Line 3. Importantly, in Line 4 the primal bound is (locally) disabled, such
that the solver will not abort solving the LP once the primal bound has been exceeded. This is
important, as the node selection might introduce too many Steiner nodes that are not necessary
to obtain a solution and Algorithm PruneSteinerNodes is applied if a solution has been found,
such that the objective value might decrease.

After having recomputed the LP and set 9S0 and 9S1 accordingly in Lines 6-10, in Lines 12-20
a subset of unfixed Steiner nodes S1 Ă Ŝ is selected to be opened according to the Steiner sites’
activation values x̂s. After having decided which Steiner sites to open, the Algorithm VCPrim-
Connect is called in each iteration to try to find a feasible solution using only the Steiner sites
contained in 9S1 (see Lines 21 and 22). If indeed a solution was found, active Steiner nodes
are pruned by calling Algorithm PruneSteinerNodes and the resulting feasible virtual arbores-
cence is returned in Line 24.

Lastly note that if - by chance - the set S1 of selected Steiner sites to be opened is empty after
executing Line 15 and only less than ten Steiner nodes are unfixed, all these Steiner sites are
activated in Line 16 and 17. While the choice of ‘ten’ is again rather arbitrary, we therefore
forbid possibly very long loops for deciding which Steiner sites to open. However, even
without this mechanism, the expected number of iterations needed for selecting the Steiner
sites to open, is bounded by the constant 100 as Ŝ contains at least a single element and all
elements have an opening ‘probability’ larger than 1%. The Lines 16,17 will therefore be
rather of use for the simple variant which is presented in the next section, as it additionally
scales down opening probabilities.

69

Algorithm 8.5: MultipleShots
Input : Network G “ pVG, EG, cE, uEq, Request RG “ pr, S, T, ur, cS, uSq,

LP relaxation solution px̂, f̂q P FLP to IP-A-CVSAP
Output: A Feasible Virtual Arborescence T̂G or null

1 set tSu fi ts P S|x̂s ď 0.01u and rSs fi ts P S|x̂s ě 0.99u
2 addConstraintsLocally(txs “ 0|s P tSuu Y txs “ 1|s P rSsuq

3 set 9S0 fi tSuY and 9S1 fi rSs
4 disableGlobalPrimalBound()
5 repeat
6 px̂, f̂q Ð solveSeparateSolvepq
7 if infeasibleLP() return null
8 set tSu fi ts P S|x̂s ď 0.01u and rSs fi ts P S|x̂s ě 0.99u
9 addConstraintsLocally(txs “ 0|s P tSuu Y txs “ 1|s P rSsu)

10 set 9S0 Ð 9S0 Y tSu and 9S1 Ð 9S1 Y rSs

11 set Ŝ fi Szp 9S0 Y 9S1q

12 if Ŝ ‰ H then
13 repeat
14 set S1 fi Ŝ
15 remove s from S1 with probability 1´ x̂s for all s P S1

16 if S1 “ H and |Szp 9S0 Y 9S1q| ă 10 then
17 set S1 Ð Szp 9S0 Y 9S1q

18 until S1 ‰ H

19 addConstraintsLocally(txs “ 1|s P S1u)
20 set 9S1 Ð 9S1 Y S1

21 T̂ P
G fi pV̂ P

T , Ê
P
T , r,Hq where V̂ P

T fi tru Y T Y 9S1 and ÊT fiH

22 set T̂G fiVCPrimConnect(G,RG, T̂ P
G)

23 if T̂G ‰ null then
24 return PruneSteinerNodes(T̂G)
25 until 9S0 Y 9S1 “ S
26 return null

8.6.2. Variant MultipleShotsSquared
The approach taken by Algorithm MultipleShots is similar to the one employed in the fast
greedy diving algorithm presented in Section 8.5.2, as in each iteration a set of Steiner sites
is activated. However, in the fast greedy diving algorithm the number of activated Steiner
sites is strictly bounded to be less than 5%. In contrast, Algorithm MultipleShots can activate
an arbitrary amount of Steiner sites. Even though the Steiner site opening variables can be
naturally interpreted as probabilities, chances are that Algorithm MultipleShots activates too
many Steiner nodes in a single iteration. We therefore propose the following simple variant

70

which scales down opening probabilities by squaring them.

Definition 8.7: ALGORITHM MULTIPLESHOTSSQUARED

The algorithm MultipleShotsSquared is the variant of Algorithm MultipleShots, in which
in Line 15 each node is removed with probability 1´ x̂2

s.

8.7. Runtime Considerations
In this section we conclude our discussion of the linear programming based heuristics pre-
sented by showing that these are indeed polynomial algorithms.

First of all note that linear programming formulations can be solved in polynomial time by
using e.g. the ellipsoid method (see [MG07] for a nice introduction). Furthermore, Grötschel,
Lovász and Schrijver have the equivalence of strong optimization and separation [GLS]. By
this famous theorem the linear relaxation of IP-A-CVSAP can be solved within polynomial
time as there exists a strong separation oracle for the set of exponential constraints IP-2.

While the above results are very important, linear relaxations are still in practice mostly
solved using the simplex algorithm, even though the polynomial runtime of the simplex algo-
rithm could not be established [MG07].

As our solver (see [RS13a]) relies on the simplex algorithm to solve linear relaxations and
runtime bounds to solve linear relaxations in polynomial time are not practical, we only argue
that the heuristics defined are indeed polynomial but do not give upper bounds on the runtime.

To check that Algorithm GreedyDiving can be implemented in polynomial time, note that
the main loop will be executed at most Op|VG| ¨ |EG|q many times, as in each iteration ei-
ther a Steiner site variable is fixed or the lower bound of a flow variable is increased. As
uEpeq ď |VG| can be assumed without loss of generality, after Op|VG| ¨ |EG|q many iterations
all variables are fixed and the loop is exited. As in each iteration the linear relaxation for
which all constraints, including all connectivity inequalities, hold, can be computed in poly-
nomial time by the result of Grötschel et al, the overall runtime of Lines 4-30 is polynomially
bounded. As the polynomial runtime of Algorithm VCPrimConnect has been established
in Theorem 8.4 and the polynomial runtime of Algorithm PartialDecompose follows from
Lemma 5.12, we obtain the following result.
Theorem 8.8: The greedy diving heuristics can be implemented to run in polynomial time.

As above the polynomial runtime of Algorithm GreedyDiving and the same considera-
tions also apply to its variants, these are all indeed polynomial time heuristics.

The polynomial runtime of the multiple shots heuristics follows by the same argument, as
in each iteration at least a single Steiner site variable is fixed in constant expected time (see the
discussion at the end of Section 8.6.1) and all Algorithm VCPrimConnect has a polynomial
runtime.

Corollary 8.9:The Multiple Shots Heuristics can be implemented to run in polynomial time.
�

71

Part IV.

Computational Evaluation

9. Outline of the Computational
Evaluation

In Part II two distinct exact algorithms have been proposed for solving CVSAP, namely the
naive multi-commodity flow formulation A-CVSAP-MCF and the VirtuCast Algorithm that
builds upon the single-commodity flow formulation IP-A-CVSAP. In part III four distinct
types of heuristics have been presented to (try to) compute feasible solutions for CVSAP,
namely the combinatorial Algorithm GreedySelect and the LP-based algorithms FlowDeco-
Round, GreedyDiving and MultipleShots.

In this part of the thesis, all of the above algorithms are evaluated in an extensive explorative
study on three distinct topologies (see Section 10). For each topology five different graph sizes
with 15 instances each are considered. The instances per graph size are generated subject to
different cost and capacity distributions, to allow for evaluating the algorithms’ general pefor-
mance. Since only 15 instances are considered, the performance of the algorithms will not be
discussed with respect to specific cost or capacity distributions. Nevertheless, by considering
225 instances overall, the computational evaluation does not only explore the performance but
also allows to draw qualitative conclusions.

As VirtuCast is a branch-and-cut algorithm, in Section 11 first a set of separation parame-
ters and branching rules are chosen to obtain the best possible dual bounds. In Section 12 the
performance of the LP-based heuristics is assessed within the VirtuCast branch-and-cut solver
with regard to the following criteria: efficiency in finding solutions, the quality of the solu-
tions found and the runtime. Having established general observations, the topology-dependent
performance is considered, yielding a selection of (topology-dependent) heuristics to include
as primal heuristics in the final VirtuCast branch-and-cut solver.

While Sections 11 and 12 are necessary preliminary steps to obtain the best overall Virtu-
Cast performance, both sections yield valuable contributions in their own right. With respect
to the separation parameters we find that employing nested cuts does not improve the perfor-
mance while employing creep-flow is crucial. This contrasts the observations of Koch and
Martin [KM98], who established that both are beneficial for separating Steiner cuts. Even
more importantly, in Section 12 distinct topology-independent performance characteristics for
the proposed LP-based heuristics are obtained.

Having thoroughly discussed separation and branching parameters in Section 11 as well as
the performance of heuristics in Section 12, the performance achieved by the final VirtuCast
solver is discussed rather shortly in Section 13. Lastly, in Section 14 the performance of the
final VirtuCast solver is used as a baseline for the performance evaluation of the following
alorithms:

1. the multi-commodity flow formulation A-CVSAP-MCF, which is solved using CPLEX,

73

2. the combinatorial heuristic GreedySelect and

3. the VirtuCast solver with only SCIP’s heuristics enabled.

In the following, Section 9.1 introduces measures used to evaluate the performance of al-
gorithms and Section 9.2 introduces the general computational setup that was used for all
experiments.

9.1. Notation & Measures
As we will use 15 instances for each topology and each graph size, we mainly use box plots to
present our results. Note that all boxplots presented in this section use the standard 1.5 ˚ IQR
whiskers of R (and not the 95th and 5th percentiles).

To measure the quality of solutions, the relative objective gap is used, which is computed as
pP ´Dq{D for minimization problems, where P denotes the primal bound, i.e. the objective
of the best known solution, and D denotes the dual bound.

Similarly, the improvement of the dual bound is measured as pDf ´ Drq{Dr where Dr

denotes the dual bound at the root and Df denotes the final dual bound.
When measuring the objective gap, we sometimes incorporate infinite gaps in the boxplot

to denote that no primal solution was found. Within the plots, the8 symbol is used.

9.2. General Computational Setup
All our experiments were conducted on machines equipped with an 8-core Intel Xeon L5420
processor running at 2.5 Ghz and 16 GB RAM.

VirtuCast was implemented in C/C++ using the SCIP framework as underlying branch-and-
cut framework. The VirtuCast solver allows for the multi-threaded separation of connectivity
inequalities via a thread pool that is implemented using fine-grained locking. This feature is
always enabled and we use 8 threads corresponding to the number of (physical) cores. Even
though the performance improvement by utilizing multi-threading is not studied within this
thesis, we note that preliminary experiments have shown a performance improvement even
on small instances where only few tasks, i.e. Steiner sites or terminals to compute maximum
flows from, exist.

Furthermore, the maximal number of separation rounds is set to 5 for all experiments, such
that the LP will at most be resolved at each node 5 times. At the root however, we allow for
arbitrary many separation rounds.

As the VirtuCast solver as well as CPLEX, which is used to solve formulation A-CVSAP-
MCF, rely on multithreading, all given (run)times are wallclock times.

Lastly, note that all of the considered algorithms have been implemented by the author
without utilizing any algorithmic libraries in C/C++.

74

10. Topologies

In this section the different toplogies used in the computational evaluation are presented,
namely fat trees, 3D tori and synthetic ISP topologies, which are generated by IGen [Quo+09].
In Section 10.1 a short overview in which contexts these topologies are used is given and their
characteristics are discussed. In Section 10.2 an overview over the (common) generation pa-
rameters is given and Sections 10.3 to 10.5 present the detailed generation parameters for fat
tree, 3D torus and IGen instances respectively.

10.1. Selected Topologies
Fat trees are a scalable data center topology that were introduced in the work of Al-Fares
et al. [AFLV08]. Each fat tree network consists of three layers of k-port switches (see Fig-
ure 10.1b). The bottom two layers interconnect in a full bipartite fashion and form so called
pods. Each pod is connected to several core switches which constitute the top-most layer.
Hosts are connected to the lowest layer of switches only. Note that the diameter of this topol-
ogy is constant, independent of how many hosts are connected. Fat trees have received much
attention lately as the bandiwdth available for hosts to send and receive data is only limited
by the (single) connection with which the hosts are connected to their pod. Therefore, fat
trees are highly connected, aiming at alleviating the common oversubscription of links in data
centers [BH09].

3D tori are another type of data center topologies. A 3D torus is a three dimensional grid
graph, where each node is connected to exactly six other nodes (see Figure 10.1a). This
topology is often used in high performance computing and big data applications [Cos+12]. In

(a) A 3D torus of side length 3. (b) A fat tree using 4-port switches (rectangles).

Figure 10.1.: Examplary 3D torus and fat tree topologies.

75

Figure 10.2.: An ISP topology generated by IGen with 2400 nodes.

contrast to fat trees, 3D tori have a limited degree and posess a diameter ofOp 3
?
nq where n is

the number of nodes.
The ISP topologies we consider are synthetic ones generated by the IGen topology gener-

ator [Quo+09]. In contrast to the above introduced data center networks, the generated ISP
topologies consist of locally well-connected clusters that model autonomous systems (AS),
which interconnect via a (planar) backbone. The nodes used to connect different ASes model
points of presences (PoPs). Due to the planarity of the backbone, the diameter is generally not
bounded. In Figure 10.2 an example topology is depicted.

10.2. Generation Parameters
Even though we do not target specific applications, the following parameters will be chosen
topology dependent.

Selection of Steiner sites Given a topology, a subset of nodes needs to be selected to become
Steiner sites. As nodes in the network may represent different entities of the topology, this
selection is topology dependent.

Steiner site installation costs We will consider only one type of Steiner nodes, such that all
Steiner sites have the same capacity. Therefore, Steiner site costs will generally be fixed. How-
ever, on ISP networks even hosting the same processing functionality might induce different
costs at different locations.

Edge costs For the regular 3D tori we will assume fixed unit edge costs. For fat trees, we
will assume the connections towards core switches (top most layer) to be more costly than
other links, such that processing functionality is more likely to be placed within pods. On
IGen instances, edge costs are generally defined by the metric costs of the incident nodes.

76

The following parameters are common to all topologies.

Steiner site capacities Independent of the topology, we fix the capacity of Steiner sites and
the root to be 5. However, as we will vary the costs of opening Steiner sites, the installation
cost per incoming connection will vary accordingly. Thus, this has a similar effect as if costs
were fixed and capacities are scaled.

Edge capacities Independent of the topology, we will use three types of edge capacity dis-
tributions that assign an edge a capacity between one and three. The first one chooses with a
probability of 60% an unit capacity, with 30% a capacity of two and with 10% a capacity of 3.
For the other two capacity distributions probabilities of 20%, 60%, 20% and 10%, 30%, 60%
are used for selecting a capacity of one, two or three. By varying edge capacities, different
loads on the topology are modeled.

10.3. Fat Tree
We have selected the graph sizes as listed in Table 10.1, such that fat tree topologies are
constructed using t8, 12, . . . 24u-port switches. All switches are selected to be possible Steiner
sites and half of the possible hosts are uniformly at random selected to be terminals.

We define edge costs between switches in pods to be one towards the core layer to be four.
Edges connecting terminals are assigned no costs, as the terminal is only connected via a
single edge. Note that given these edge costs, each terminal can reach each other terminal by
a path of cost less than or equal to 10. According to this observation, we choose fixed Steiner
site installation costs to be either 1, 10, 20, 30 or 40. Therefore, if e.g. the installations costs
are 1, a Steiner site will be always activated if more than one flow traverses it. On the other
hand, a cost of 40 implies that installing a Steiner node, reduces the overall costs if 5 nodes
are connected to it.

Graph Size Ports Nodes Edges Steiner Sites Terminals
I 8 112 544 80 32
II 12 288 1836 180 108
III 16 576 4352 320 256
IV 20 1000 8500 500 500
V 24 1584 14680 720 864

Table 10.1.: Graph sizes for fat tree instances.

10.4. 3D Torus
We have selected the graph sizes as listed in Table 10.2. Steiner sites are distributed equally
spaced throughout the network, such that a quarter of the nodes may process flows. Terminals

77

are distributed uniformly at random. Edges have a fixed cost of 1. The installation costs for
Steiner sites are chosen to be 0.125, 0.25, 0.5, 1 or 2 times the diameter of the torus, which is
3k{2 for a side length of k (for k even). The idea behind these Steiner site costs is again to
vary the cost point at which the installation of processing functionality can reduce costs. For
Steiner costs of 2 times the diameter, the installation of a Steiner node only makes sense if at
least 4 flows can be processed, as the Steiner node needs to be connected itself.

Graph Size Side Length Nodes Edges Steiner Sites Terminals
I 4 64 384 16 32
II 6 216 1296 54 108
III 8 512 3072 128 256
IV 10 1000 6000 250 500
V 12 1728 10368 432 864

Table 10.2.: Graph sizes for 3D torus instances.

10.5. IGen
We have selected the graph sizes as listed in Table 10.3. Edge costs are defined by the metric
distance between nodes. However, inter-AS edges are weighted three times the original (met-
ric) cost. All PoPs are selected to be Steiner sites and terminals are distributed uniformly at
random. Figure 10.2 depicts an example instance.

The costs for installing processing functionality on Steiner sites again depends on the di-
ameter of the graph. We use again 0.125, 0.25, 0.5, 1, 2 times the diameter of the graph as
expected cost. In contrast to the data center scenarios, we can argue that the costs for activat-
ing Steiner sites depends to some extent on the location. We therefore add some noise. If c is
the expected cost, then Steiner site costs are distributed according to the following distribution
c` Up´c{20, c{20q, such that the cost may vary by at most 10%.

Lastly, as inter-AS links represent backbone connections, we add a fixed capacity of three
on top of the randomly selected capacity that ranges between one and three.

Graph Size Nodes Intra-AS Edges Inter-AS Edges Steiner sites Terminals
I 800 3040 294 79 160
II 1600 6032 678 163 320
III 2400 9092 958 233 480
IV 3200 12340 1180 313 640
V 4000 15396 1528 401 800

Table 10.3.: Graph sizes for IGen instaces.

78

11. Separation & Branching
Parameters

In this first part of our computational evaluation we investigate the impact of separation param-
eters and branching rules on the performance of our branch-and-cut based VirtuCast algorithm.
The parameters considered will be discussed shortly below.

11.1. Considered Parameters
creep-flow As discussed in Section 5.4.1, creep-flow is a technique to empirically improve
the quality of found cuts.

nested cuts As discussed in Section 5.4.1, employing nested cuts allows to generate multiple
cuts in each separation round.

Separation of Terminal Connectivity Inequalities IP-3‹ In Lemma 5.2 we have shown that
including the connectivity inequalities IP-3‹ can strengthen the formulation. However, as the
number of terminals exceeds the number of Steiner sites in most cases, separating these cuts
necessitates a large number of additional maximum flow computations.

Scale Parameter We employ an integral maximum flow algorithm to separate connectivity
inequalities to circumvent numerical instabilities. Therefore, all real-valued flow values need
to be scaled by a certain parameter. While a small scaling factor reduces the runtime of
the maximum flow algorithm, it worsens the integral approximation of the flow, such that
potentially less cuts are found.

Forcing Cuts into the LP SCIP implements a set of decision rules to decide which of the
found cuts shall be included into the LP. The reason for not including all the found cuts is that
with each cut, the number of rows in the LP increases and so does the time for solving the
linear relaxation. However, SCIP allows to force cuts into the LP, such that all found cuts are
included. Forcing the cuts into the linear relaxation might be beneficial, since found cuts can
only strengthen the formulation.

Storing Cuts in the Cut Pool SCIP allows to store found cuts in a global cut pool. After
having computed the linear relaxation, SCIP can search for cuts in the global cut pool to deter-
mine whether the found relaxation is feasible or not. If the relaxation violates one or multiple

79

cuts, these violated cuts are added to the LP and the LP is resolved. As searching the global
cut pool for violated cuts is done before calling separation procedures, the computationally
expensive maximum flow computations can potentially be avoided.

Branching rules SCIP implements more than half a dozen branching rules. We have selected
the two most common ones to test, namely reliable pseudo cost and pseudo cost branch-
ing [Ach07]. Both branching schemes build upon the estimation of pseudo costs, estimating
the (global) impact on the objective if the variable is fixed to its lower or its upper bound.
To obtain initial estimates on the pseudo costs, the reliable pseudo cost branching performs
strong-branching at the root [Ach07] In contrast, the (non-reliable) pseudo cost branching
rule does not perform strong-branching and therefore only obtains reasonable estimates on the
fly after several branchings. Furthermore, we will use the GreedyBranch rule introduced in
Section 5.4.2.

11.2. General Methodoloy
Having selected a certain subset of the above parameters, all possible combination of param-
eters will be tested. To evaluate the impact of a certain parameter, we generally compare the
benefits of enabling a feature vs. disabling it on a per instance basis. Considering e.g. the im-
pact of the creep-flow parameter, the different experiments in which creep-flow was enabled
are compared to the experiments in which it was disabled. Importantly, this is done in such
a way that only executions are compared in which all the other parameters agree, such that
the impact of parameter is clearly distilled. It must be noted that not all parameters discussed
in the above section are independent of one anoter. For example the scale parameter influ-
ences both the runtime of separating connectivity inequalities of Steiner sites and terminals.
Nonetheless, by considering the improvement on a per instance basis, features that generally
improve performance can be filtered out.

To evaluate the runtime impact of the parameter settings, we consider the overall separation
runtime, the separation runtime per node and the separation runtime at the root. To evaluate
the impact on the quality of parameter settings, we consider the dual bound at the root as
well as the final dual bound that was obtained. Based on the per execution comparison and as
certain features may have both beneficial as well as negative effects, all results are presented
as ratios in per cent. Therefore, a value of 10% means

Due to the number of parameters evaluated, experiments are not run on each of the 15
instances (three edge capacity and 5 Steiner cost distributions) per graph size and topology,
but only on one. The chosen instance is always the one with medium edge capacities and
medium Steiner costs.

11.3. Initial Parameter Validation
Ou initial experiments consider only separation related parameters, namely: creep, nested
cuts, separating terminal inequalities, scale, storing cuts and forcing cuts into the LP.

80

With respect to the scale parameter, settings of t100, 1000, 10000u are considered. If nested
cuts are enabled, we abort the generation of further cuts at a depth of 5, such that maximally 5
cuts are introduced. With respect to separating terminal inequalities, these are either separated
at each node or disabled globally.

Based on the above selection of parameters, 96 different parameter combinations are ob-
tained. As experiments are performed on all topologies and all graph sizes, this yields 1440
experiments overall and we limit the runtime to 30 minutes.

For the experiments, the following common parameters have been used. None of our LP-
based heuristics is included, while SCIP’s heuristics are called according to their default set-
tings. The global cut pool is assigned a size of 20,000 and cuts are separated at each node.
The optimality switch of SCIP is used, such that cut generatos are called more frequently. As
SCIP’s default settings are used for all other parameters, the reliable pseudo cost branching is
used throughout all experiments.

11.3.1. Overview of Results
In Figure 11.1 a global overview of the runtime, the objective gap, the progress of the dual
bound (i.e. the final dual bound compared to the root’s dual bound), the number of cuts and
the number of nodes is given. As one can see, all but the smallest fat tree and the smallest
torus instances cannot be solved within 30 minutes to optimality. For the two largest graph
sizes, only seldomly solutions are found. The number of cuts decreases when the graph sizes
are increased and the same applies to the number of nodes which for the largest graph sizes
are generally below 50. Most importantly however, the improvement of the dual bound with
respect to the root’s dual bound is very limited.

To explain this behavior, the runtime allocation of the most time consuming parts of the
solver are depicted in Figure 11.2. As one can observe, (especially) diving heuristics are
running for up to 1000 seconds, and therefore may consume more than half of the overall
runtime, which is limited to 1800 seconds. Together with the (per default) enabled reliable
pseudo cost branching, which approximately uses 400 seconds on the larger instances and LP
solving times of multiple hundred seconds, this leaves only little time for exploring nodes and
separating inequalities.

Since the runtime of the final solver will be limited by one hour instead of 30 minutes, and
as on some instances less than 5 seconds is spent in separation procedures, the obtained results
are unreliable and do not allow to project the impact of the parameters under investigation on
a runtime of one hour. Therefore, another set of experiments with a runtime of one hour
was undertaken and is reported on in Section 11.4, where diving heuristics are disabled and
branching rules are investigated, too. To reduce the number of overall parameter combinations
for this second parameter validation, we nonetheless evaluate the impact of some parameters
in the next secion.

11.3.2. Detailed Results of Parameter Validation I
Figures 11.3 - 11.5 present the detailed analysis of the impact of the following parameters:
force cuts into the LP (see Figure 11.3), store cuts in the global cut pool (see Figure 11.4),

81

separate terminal connectivity inequalities (see Figure 11.5). In all of these figures, the per-
formance of when a feature is enabled is compared to the performance when it is disabled.

Forcing Cuts into the LP

According to Figure 11.3 forcing all found cuts into the LP has a very negative impact on IGen
instances, lowering the final dual bound by 12% on graph size III. Note that this is despite the
fact that the root relaxation time is considerably reduced on between 5% and 10% the time
necessary when cuts are not forced into the LP. This parameter has no impact on the final
dual bound of 3D torus and fat tree instances. As the solution time of the linear relaxations
increases as all found are cuts are used, we will disable forcing cuts into the LP and rather rely
on the techniques implemented in SCIP to determine the good cuts to use [Ach07].

Storing Cuts in the Global Cut Pool

In Figure 11.4 the impact of storing cuts in the global cut pool is presented. Enabling this
feature has seemingly no impact at all, as all final dual bounds are essentially the same and
neither the overall separation time is not decreased. As storing the found cuts and separating
introduces additional computational overhead and does not improve the performance, it will
generally disabled.

Separation of Terminal Connectivity Inequalities

Considering the separation of terminal connectivity inequalities (see Figure 11.5 we notice
that the time spent in separation procedures per node as well as overall only increases slightly.
This is a rather surprising result, as separating terminal inequalities at each node requires at
least one additional maximum flow computation per terminal.

Since the quality of the dual bound is not influenced to any extent, in the next parameter
validation (see Section 11.4) the frequency of separating terminal inequalities will be lowered
to try to improve the performance / runtime trade-off.

82

PERFORMANCE OVERVIEW OF PARAMETER VALIDATION I

Fat Tree IGen Torus

R
un

tim
e

[s
]

●
●

●

●
●

●

●

●●

●

●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

I II III IV IV

0
50

0
10

00

●●●●●●●●●●●●●●

●

●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●

I II III IV IV

13
00

15
00

17
00

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●

I II III IV IV

0
50

0
10

00

O
bj

.G
ap

[%
]

●●●●
●

●

●

●
●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

0
10

0
20

0
30

0
∞

I II III IV IV

●
●

●●
●

●

●

●
●

●●
●●

●

●

●
●

●2
4

6
∞

I II III IV IV

●●0
20

40
60

80
∞

I II III IV IV

D
ua

lB
ou

nd
Im

pr
ov

.[
%

]

●●●●●●●●

●●●●●●●●●●●

I II III IV IV

0
2

4
6

8
10

●

●

●
●

●

●●
●●●
●

●●

I II III IV IV

0.
0

0.
4

0.
8

●

●●●●

●● ●●●●●●●●●●●●●●●

I II III IV IV

0
1

2
3

4

N
um

be
rO

fC
ut

s

●●

●

●

●

●
●
●
●

●
●

I II III IV IV

1e
+

03
1e

+
04

1e
+

05

●●●●●
●
●
●●●

●●●●● ●

I II III IV IV

5e
+

03
5e

+
04

●●●

●

I II III IV IV

5e
+

02
5e

+
03

5e
+

04

N
um

be
ro

fN
od

es

●●

●

●●
●●●●
●

●●

●

●●●

●
●●
●

●
●
●
●
●
●
●
●
●

●●●

●

●

●●
●
●●●
●●●
●
●

●
●
●

●

●
●●●
●●
●
●●
●
●●●
●

●
●

●

●●●●●
●●●●●●●●●●●

I II III IV IV

1
10

10
0

10
00

0

●●●
●
●

I II III IV IV

5
50

50
0

10
00

0

●

●●●●●●●●●

●

●

●

●●
●
●●●

●

I II III IV IV

5
50

50
0

50
00

Figure 11.1.: Overview of the general performance of the solver in the initial separation eval-
uation for the different topologies and the different graph sizes.

83

RUNTIME ANALYSIS OF PARAMETER VALIDATION I

Fat Tree IGen Torus

B
ra

nc
hi

ng
[s

]

●
●●

●●

●

●●

●

●

I II III IV IV

0
40

0
80

0

●

I II III IV IV

0
20

0
60

0
10

00

●●

●

●●

●●

●
●●

●

●

I II III IV IV

0
20

0
40

0
60

0

H
eu

ri
st

ic
s

[s
]

●●●
●●
●●

●

●●●●●

I II III IV IV

0
40

0
80

0

I II III IV IV

0
20

0
60

0

●●●

●

●

●

●

●

●

I II III IV IV

0
40

0
80

0
12

00

D
iv

in
g

H
eu

ri
st

ic
s

[s
]

●●●
●●
●●

●

●●●●●

I II III IV IV

0
40

0
80

0

I II III IV IV

0
20

0
60

0

●●●●●●

●

●

●
●

I II III IV IV

0
40

0
80

0
12

00

L
P

[s
]

●
●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●●

●●
●

I II III IV IV

0
50

0
10

00
15

00

●

I II III IV IV

20
0

60
0

10
00

14
00

●●●●

●

●

●

●

I II III IV IV

0
40

0
80

0
12

00

Se
pa

ra
tio

n
[s

]

●
●
●●
●●

●●
●●●●●

●●●
●
●
●
●

●
●●●
●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

I II III IV IV

1e
−

01
1e

+
01

1e
+

03

I II III IV IV

2
5

20
10

0
50

0

●

●● ●●
●
●

I II III IV IV

5e
−

02
5e

+
00

Figure 11.2.: Runtime analysis of the solver during the initial parameter validation. The
branching runtime contains the time for solving linear relaxations when strong branching is
performed. The heuristic runtime analogously contains the runtime for solving linear relax-
ations when e.g. diving is performed. The LP runtime itself therefore only denotes the runtime
spent for solving the relaxations of nodes of the branch-and-bound tree. The separation run-
time contains the maximal flow computations without resolving the linear relaxations.

84

PARAMETER VALIDATION I: FORCING CUTS INTO THE LP

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●
●

●
●

●

●●

●●

I II III IV IV

20
50

10
0

●

●

●
●

●●

●

●
●●●●●

●●

I II III IV IV

5
20

10
0

50
0

I II III IV IV

5
10

20
50

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

●

●
●

●

●
●

●

I II III IV IV

50
10

0
20

0

●
●
●

●

●

●
●

●

●

●

I II III IV IV

20
50

20
0

10
00 ●●●●

●

●●

●●

●

●

I II III IV IV

50
10

0
20

0
50

0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●
●

●
●

I II III IV IV

50
10

0
15

0

●●●
●

●
●
●●
●
●

●

●
●

●

●

●

I II III IV IV

2
5

20
10

0
50

0 ●

●

●
●

●

●
●●

●

●

●

●●

●

I II III IV IV

10
0

20
0

50
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●●

●

●

●

●●●●

●
●
● ● ●

I II III IV IV

99
10

0
10

1
10

2

●

●

●

●●
●●●
●●●

●
●

I II III IV IV

90
95

10
0

10
5

●

●

●●

●

●

I II III IV IV

99
.5

10
0.

5
10

1.
5

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●

●
●

I II III IV IV

99
.7

99
.9

10
0.

1

●

●

●

● ●●

●

●

●●
●●●

●
●

I II III IV IV

90
94

98

●

●

●

●

●

●

● ●

I II III IV IV

99
.0

10
0.

0

Figure 11.3.: Impact of force adding cuts into the LP for all graph sizes on all topologies.

85

PARAMETER VALIDATION I: STORING CUTS IN THE GLOBAL CUT POOL

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

●●
●

●

●

●

I II III IV IV

50
10

0
50

0 ●

●●

●

●

●
●
●

●
●

●●●

●

I II III IV IV

10
50

20
0

10
00

●

●

●

●

●
●

●

●

●

●
●

●
●●

I II III IV IV

40
60

10
0

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

●●

● ●

●

●

I II III IV IV

10
0

15
0

25
0

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

I II III IV IV

10
20

50
20

0
●

● ●

I II III IV IV

50
10

0
15

0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●

●

I II III IV IV

50
10

0
15

0

●
●

●

●

●

●

●

●

●●
●●

● ●
●●●
●
●

●

●
●●

●

●

I II III IV IV

1
5

50
50

0

●

●●●●

●

●

●

●

●
●

● ●

●

●
●

●
●
●

●

●

I II III IV IV

50
10

0
20

0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

I II III IV IV

99
10

0
10

1
10

2

●

●

●

●●
●

●

●●●

●●●●
● ●●●●●

●●
●● ●●

●
●
●
●
●
●

I II III IV IV

90
10

0
11

0

●

●●●

●●●

●

I II III IV IV

99
.5

10
0.

5

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●●●
●

I II III IV IV

99
.8

10
0.

0
10

0.
2

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

I II III IV IV

95
10

0
10

5

●
●

●
●

●

I II III IV IV

99
.6

10
0.

2
10

0.
8

Figure 11.4.: Impact of storing cuts in the global cut pool for all graph sizes on all topologies.

86

PARAMETER VALIDATION I: SEPARATING TERMINAL INEQUALITIES

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

●
●

●

●

●
●

●

●●

I II III IV IV

50
10

0
50

0 ●
●

●

●

●

●
● ●

●

●●

●●●●

●

●

●

I II III IV IV

5
20

10
0

50
0

●

●

●

●●●

●

●

●

●

●

I II III IV IV

80
12

0
16

0

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

● ●

●●

I II III IV IV

50
10

0
15

0
25

0

●

●

●

●

●●

●

●
●

●●

●

●

I II III IV IV

10
50

20
0

10
00

●

●

●

●

●

●

●
●

●

●

●
●●●●●

●

●●

●

●●

●

I II III IV IV

50
10

0
20

0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●
●

I II III IV IV

50
10

0
15

0

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●●●

●
●

I II III IV IV

5
50

50
0

10
00

0

●

●

●

●

● ●

●

●

●

●
●
●

●

●●

●

●

●

I II III IV IV

50
10

0
20

0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●

●

●

●●●

●

●●

●●●

●

●

●

●●

● ●

I II III IV IV

98
.0

99
.0

10
0.

0

●

●

●
●●●●

●

●

●

●

●

●

●

●
●●
●●●

●

●●●●●
●
●
●● ●

●
●
●●

I II III IV IV

90
10

0
11

0

●

●

●

● ●

I II III IV IV

99
.0

10
0.

0

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●

●
●

●
●

●

I II III IV IV

99
.8

10
0.

0
10

0.
2

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

●

I II III IV IV

95
10

0
10

5

●

●

●
●
●●

●

●

●

I II III IV IV

99
.0

99
.5

10
0.

5

Figure 11.5.: Impact of seperating terminal connectivity inequalities for all graph sizes on all
topologies.

87

11.4. Final Parameter Validation
As discussed in Section 11.3.1, diving heuristics as well as the per default enabled reliable
pseudo cost branching rule consumed a majority of the runtime, which was limited to 1800
seconds. As diving heuristics failed to produce solutions on most of the larger instances,
these are disabled in the final parameter validation. Furthermore, as the reliable pseudo cost
branching may consume up to 600 seconds, the study presented henceforth will also consider
different alternative branching rules. To yield reliable results, the runtime limit is increased to
the runtime limit of the final experiments, namely one hour.

The results of Section 11.3.2 suggest that forcing cuts into the LP and storing cuts in the
global cut pool have no (positive) effect. To reduce the number of experiments, these param-
eters are not considered. The number of experiments is further reduced by only considering
scale factors of t1000, 10000u, as Koch et al. advise a setting of 100,000 [KM98].

The final parameter validation experiments therefore consider the following parameters:
creep, nested cuts, separating terminal inequalities, scale and branching rules. The branching
rules employed are reliable pseudo cost, pseudo cost and the greedy branching scheme pre-
sented in Section 5.4.2. As discussed in Section 11.3.2, the separation of terminal connectivity
inequalities does not worsen the final lower bound, even though the time spent in separation
procedures increases vastly. Therefore, in the final set of experiments, we consider separating
them with a frequency of 10 versus only separating them at the root. A frequency of 10 means
that the inequalities are separated at all nodes of the branch-and-bound tree whose depth is a
multiple of 10.

Similarly to the inital parameter validation, for each topology and graph size the medium
edge capacitiy and medium Steiner cost instance is used. Based on the above selection of
parameters, 48 different parameter combinations are tested on each of the 15 topologies and
graph sizes, yielding 720 experiments overall.

The evaluation of this second set of experiments follows the same outline as the initial
parameter validation. In Section 11.4.1 first the general performance of the solver will be
discussed and the reliability of the results established. In Section 11.4.2 the impact of the
parameters are discussed in-depth. Based on this discussion, the final set of parameters for all
further experiments is summarized in Section 11.5.

11.4.1. Overview of Results
The performance overview of the solver is presented in Figure 11.6. Note that even though the
diving heuristics have been disabled, the runtime of one hour allows to solve more instances
than in the initial set of experiments. Importantly, the improvement of the dual bound with
respect to the root relaxation has been slightly decreased across all topologies and graph sizes
(cf. Figure 11.1). The authors believe this to be due to the lack of high quality solutions,
which were obtained previously by the diving heuristics.

Considering the runtime allocation of the different components of the solver (see Fig-
ure 11.7), a much larger fraction of time is spent in the separation procedures of connectivity
inequalities. Furthermore, the median of the runtime of heuristics lies around 200 seconds and

88

the time spent in branching is only above a few seconds if reliable pseudo cost branching is
applied.

11.4.2. Detailed Results of Parameter Validation II
Figures 11.8 - 11.11 present the detailed analysis of the impact of the parameters creep-flow,
nested cuts, separation of terminal inequalities and scale.

For evaluating the impact of branching rules, Figures 11.12 - 11.14 compare the results of
the three testes branching rules on 3D torus, IGen and fat tree instances respectively.

Creep-Flow

The runtime and qualitative impact of creep-flow is depicted in Figure 11.8. While the quality
of the final dual bound increases by 1% to 3% on IGen and 3D torus instances, the impact on
fat tree instances is negligible. Importantly, the dual bound is increased even though the time
spent in separation procedures is increased by a factor of up to 50. This increase in runtime
is due to the fact that edges not used in the relaxation’s solution carry flow, thereby increasing
connectivity, such that the corresponding flow computations require more time.

This shows that by employing creep-flow the quality found cuts is substantially improved.
Thus, creep-flow will be enabled in all further experiments.

Nested Cuts

In contrast to creep-flow, employing nested cuts to generate multiple cuts for each Steiner site
or terminal does generally not improve the dual bound while increasing the separation time
per node (see Figure 11.9). Nested cuts will therefore be disabled for all further experiments.

Terminal Connectivity Inequalities

Separating terminal connectivity inequalities at depth levels t0, 10, 20, . . . u compared to sep-
arating them only at the root (depth level 0), does neither improve the final dual bound nor
increase the separation time significantly. Again, this is highly interesting as the number of ter-
minals is generally larger than the number of Steiner sites. Even though no distinct qualitative
advantage is obtained, terminal connectivity inequalities will be separated with a frequency of
10 for all further experiments, as they have the potential to strengthen the formulation and we
only considered one of the 15 Steiner cost and edge capacity combinations.

Scale

Considering the scale parameter, similarly no distinct qualitative improvement is obtained
when using a scale of 10,000 over a scale of 1,000 (see Figure 11.11). Furthermore, the
increase in the separation time lies between a factor of 1 to 2. As choosing a smaller scale
parameter decreases the worst-case runtime of the emplyoed maximum flow algorithm, the
scale of 1,000 will be used for all further experiments.

89

Branching Rules

The impact of the different branching rules is depicted in Figures 11.12-11.14 for the 3D torus,
IGen and fat tree topologies. First note that the dual bound at the root is independent of the
branching rule employed, whereas the initial probings when strong-branching is applied in the
reliable pseudo cost branching rule may increase the root relaxation time by a factor of of up
to 5.

As the runtime of the (non-reliable) pseudo cost and the greedy branching rules are bounded
by a few seconds, the remaining time for solving linear relaxations and separating connectivity
inequalities remains the same. However, when reliable pseudo cost branching is employed, the
time spent in separation procedures may be reduced by a factor of 50% on 3D torus instances.

Considering the quality of the final dual bound, the following hierarchy can be estab-
lished. Both the reliable and non-reliable pseudo cost branching perform better than the
greedy branching strategy and reliable pseudo cost branching (slightly) outperforms non-
reliable pseudo cost branching on smaller graph sizes. As the advantage of using the reliable
variant diminishes on larger instances while the number of nodes considered is reduced, the
reliable variant will be employed for graph sizes I and II, while the non-reliable variant is
employed for graph sizes III,IV and V.

11.5. Final Separation & Branching Parameters
In the following, the final separation and branching parameters employed for all further ex-
periments (unless otherwise noted) are summarized.

Common to all graph sizes, creep-flow is enabled, nested cuts are not used, terminal con-
nectivity inequalities are separated with a frequency of 10 and the scale is set to 1,000.

For graph sizes I and II the reliable pseudo cost branching rule is used while for graph sizes
III, IV and V the non-reliable variant is employed.

90

PERFORMANCE OVERVIEW OF PARAMETER VALIDATION II

Fat Tree IGen Torus

R
un

tim
e

[s
]

I II III IV IV

0
10

00
25

00

I II III IV IV

25
00

35
00

45
00

I II III IV IV

0
10

00
25

00

O
bj

.G
ap

[%
]

●●●●●●●●●●

●

●
●
●

●

●●●
●

●

●

●

●

●●

●

●●

0
10

0
20

0
30

0
∞

I II III IV IV

●

●

●

●

●

●

●
●

●
●

0
2

4
6

8
∞

I II III IV IV

●

●

●
●

●
●

●●

●●

● ●

0
20

40
∞

I II III IV IV

D
ua

lB
ou

nd
Im

pr
ov

.[
%

]

●

●●●●●●
●
● ●

I II III IV IV

0
2

4
6

8

●
●

I II III IV IV

0.
0

0.
4

0.
8

●●●●●

I II III IV IV

0.
0

1.
0

2.
0

N
um

be
rO

fC
ut

s

●
●●●●

●

I II III IV IV

2e
+

03
2e

+
04

2e
+

05

●
●

●●

●
●●●

●●

●

●

●
●

●

●

●●●●
●
●

I II III IV IV

10
00

0
50

00
0

●

I II III IV IV

50
0

20
00

10
00

0

N
um

be
ro

fN
od

es ●
●
●●

●●
●

●●

●
●
●

●●●●●●
●

●●●●

I II III IV IV

5e
+

01
1e

+
03

5e
+

04

I II III IV IV

20
20

0
20

00
50

00
0

●●
●●●●
●

I II III IV IV

10
50

50
0

50
00

Figure 11.6.: Overview of the general performance of the solver in the final parameter valida-
tion for the different topologies and the different graph sizes.

91

RUNTIME ANALYSIS OF PARAMETER VALIDATION II

Fat Tree IGen Torus

B
ra

nc
hi

ng
[s

]

●

I II III IV IV

0
50

0
15

00

●●

●

●

●
●

●●

●
●

●
●

●
●

●
●

●●

●●

●●

●
●

●●

●
●

●●

●

●
●●

I II III IV IV
0

50
0

10
00

15
00

●

I II III IV IV

0
40

0
80

0
12

00

H
eu

ri
st

ic
s

[s
]

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

I II III IV IV

0
20

0
60

0

● ●

●

●●

●

I II III IV IV

50
10

0
15

0
20

0

●●●

●●●

●

●

I II III IV IV

0
20

0
40

0

L
P

[s
]

I II III IV IV

0
10

00
25

00

I II III IV IV

50
0

15
00

25
00

35
00

I II III IV IV

0
10

00
25

00

Se
pa

ra
tio

n
[s

]

●

●

I II III IV IV

5e
−

01
1e

+
01

5e
+

02

I II III IV IV

20
10

0
50

0

●

I II III IV IV

1e
−

01
1e

+
01

1e
+

03

Figure 11.7.: Runtime analysis of the solver during the final parameter validation. The branch-
ing runtime contains the time for solving linear relaxations when strong branching is per-
formed. The LP runtime itself therefore only denotes the runtime spent for solving the relax-
ations of nodes of the branch-and-bound tree. The separation runtime contains the maximal
flow computations without resolving the linear relaxations.

92

PARAMETER VALIDATION II: CREEP-FLOW

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

I II III IV IV

50
20

0
10

00
50

00

●

●

●

●

●

I II III IV IV

5
50

50
0

50
00

●
●
●

I II III IV IV

20
00

50
00

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

●

●

●

I II III IV IV

10
0

50
0

20
00

I II III IV IV

10
0

50
0

20
00

I II III IV IV

50
20

0
10

00
10

00
0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●
●

●

●

I II III IV IV

60
80

12
0

16
0

●

●

●

●

●

I II III IV IV

50
10

0
20

0
50

0

I II III IV IV

20
50

10
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●●●●

I II III IV IV

99
.0

10
0.

0
10

1.
0 ●

●

●
●

I II III IV IV

98
10

2
10

6

●●

I II III IV IV

10
1.

5
10

2.
5

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●

●
●
●
●

I II III IV IV

99
.9

4
10

0.
00

10
0.

06

●

●

●

●

●
●

I II III IV IV

99
10

0
10

1
10

2
10

3

●

I II III IV IV

10
1.

5
10

2.
5

Figure 11.8.: Impact of enabling creep-flow for all graph sizes on all topologies.

93

PARAMETER VALIDATION II: NESTED CUTS

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●
●

●●
●●

●

I II III IV IV

20
50

10
0

●

●

●
●●

●
●●●

●

I II III IV IV

5
50

50
0

10
00

0

I II III IV IV

20
40

60
10

0

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

●

I II III IV IV

50
10

0
15

0

●●●

I II III IV IV

50
10

0
20

0
35

0

I II III IV IV

50
10

0
20

0
35

0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●

I II III IV IV

80
12

0
16

0

●● ●

I II III IV IV

50
10

0
20

0

●
●

●●

I II III IV IV

10
0

20
0

40
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

I II III IV IV

99
.0

10
0.

0
10

1.
0

●

I II III IV IV

96
98

10
0

10
2

I II III IV IV

99
.4

99
.8

10
0.

2

Fi
na

lD
ua

lB
ou

nd
[%

]

●●●●●

I II III IV IV

99
.9

4
10

0.
00

10
0.

06

●●

●

●

●

●
●

●

●

●

I II III IV IV

97
99

10
1

10
3

I II III IV IV

99
.4

99
.8

10
0.

2

Figure 11.9.: Impact of using nested cuts with a maximal depth of 5 for all graph sizes on all
topologies.

94

PARAMETER VALIDATION II: SEPARATING TERMINAL INEQUALITIES

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

●

●

●

I II III IV IV

50
10

0
20

0

●

●● ●
●

●●
●

I II III IV IV

5e
−

01
5e

+
01

5e
+

03

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●

●

●

I II III IV IV

40
60

80
12

0

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

●

●

●

●

I II III IV IV

50
10

0
15

0

●

● ●
●●
●

●

I II III IV IV

50
10

0
50

0

●

●

●

●

●

●

●

●

●

●

●

●

I II III IV IV

60
80

12
0

18
0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

I II III IV IV

60
80

10
0

14
0

●

●

●

I II III IV IV

50
10

0
20

0

●●

●

●

●

●
●

I II III IV IV

10
0

15
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●●●●

I II III IV IV

99
.0

10
0.

0
10

1.
0

●

●●

I II III IV IV

96
98

10
0

10
4

●

●

●

●●

●

I II III IV IV

99
.6

10
0.

0
10

0.
4

Fi
na

lD
ua

lB
ou

nd
[%

]

●●

●●●●

I II III IV IV

99
.9

6
10

0.
02

10
0.

08

●

●

●

●

●

●

●

●

●

●

I II III IV IV

97
99

10
1 ●

●

●

●

●

●

●

●

●

●

●

●

●

I II III IV IV

99
.6

99
.8

10
0.

0

Figure 11.10.: Impact of separating terminal connectivity inequalities with a frequency of 10
instead of separating them only at the rootfor all graph sizes on all topologies.

95

PARAMETER VALIDATION II: SCALE

Fat Tree IGen Torus

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

I II III IV IV

50
10

0
20

0

●

●

●
●●

● ●●
● ●●● ●●

I II III IV IV

5
50

50
0

10
00

0

●

●

●

●
● ●●

● ●

●

●

●

I II III IV IV

50
10

0
20

0

Se
pa

ra
tio

n
Ti

m
e

/N
od

e
[%

]

●

●

●●

●

I II III IV IV

50
10

0
20

0

●

●
●●
●

●

I II III IV IV

50
10

0
20

0
●●

●

● ●

●

●
●

●

●

●

●

●

I II III IV IV

60
80

12
0

16
0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●

●

●

I II III IV IV

60
80

12
0

16
0

●
●

●

●

I II III IV IV

50
10

0
50

0

●

●

●
●

● ●

●

●

I II III IV IV

60
80

12
0

18
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●

●

●

●●

●●

●

●

I II III IV IV

99
.0

10
0.

0
10

1.
0

●

●

I II III IV IV

96
98

10
0

10
4

●

●

●

I II III IV IV

99
.4

99
.8

10
0.

2

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●
●●
●●

I II III IV IV

99
.9

4
99

.9
8

10
0.

02

●

●

●

●
●

●

●

●

●

●

I II III IV IV

97
99

10
1

●

●

I II III IV IV

99
.6

99
.8

10
0.

0

Figure 11.11.: Impact of using a scale of 10,000 instead of 1,000 for all graph sizes on all
topologies.

96

PARAMETER VALIDATION II: BRANCHING RULES (3D TORUS)

Pseudo vs. Greedy Rel. Pseudo vs. Greedy Rel. Pseudo vs. Pseudo

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

●

●●

●

I II III IV IV

50
10

0
20

0

●

●

●

I II III IV IV
20

50
10

0

●

●

●

●

●

●

I II III IV IV

20
50

10
0

20
0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●

●

●

I II III IV IV

60
80

10
0

14
0

I II III IV IV

60
80

12
0

16
0

●

●
●

●

I II III IV IV

60
80

10
0

14
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●

●●●

●●

I II III IV IV

99
.0

10
0.

0
10

1.
0

I II III IV IV

99
.0

10
0.

0
10

1.
0

I II III IV IV

99
.0

10
0.

0
10

1.
0

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●●●

I II III IV IV

10
0.

00
10

0.
10

●●●

I II III IV IV

10
0.

00
10

0.
10

10
0.

20

●

I II III IV IV

99
.9

4
10

0.
00

10
0.

06

Figure 11.12.: Impact of branching rules on instances of the 3D torus topology. The results
of the first mentioned branching rule are compared to the results of the second mentioned
branching rule.

97

PARAMETER VALIDATION II: BRANCHING RULES (IGEN)

Pseudo vs. Greedy Rel. Pseudo vs. Greedy Rel. Pseudo vs. Pseudo

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

●

●

●

●

●

I II III IV IV

10
0

15
0

●

●

●

●

●

●

●

I II III IV IV
50

10
0

20
0

●

●

●

●

I II III IV IV

40
60

80
12

0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●

●

●

●●

I II III IV IV

40
60

80
12

0

●

●

●

●

●●

I II III IV IV

50
10

0
15

0

●

●

●

● ●

●

●

I II III IV IV

10
0

15
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●

●

I II III IV IV

99
.6

10
0.

0

●

●

●

●

●

●

●
●

I II III IV IV

99
.6

10
0.

0
10

0.
4

●

●

●

●

●

●

I II III IV IV

99
.6

10
0.

0
10

0.
6

Fi
na

lD
ua

lB
ou

nd
[%

]

●

●

I II III IV IV

99
.6

10
0.

0
10

0.
4

●

I II III IV IV

10
0.

0
10

0.
4

10
0.

8

●

●

I II III IV IV

99
.8

10
0.

2
10

0.
6

Figure 11.13.: Impact of branching rules on instances of the IGen topology. The results of the
first mentioned branching rule are compared to the results of the second mentioned branching
rule.

98

PARAMETER VALIDATION II: BRANCHING RULES (FAT TREE)

Pseudo vs. Greedy Rel. Pseudo vs. Greedy Rel. Pseudo vs. Pseudo

Se
pa

ra
tio

n
Ti

m
e

[%
]

●

●

●● ●

I II III IV IV

1
5

50
50

0

●
●

●

● ●
● ●

I II III IV IV
1

5
20

10
0

50
0

● ●

●

I II III IV IV

1
5

20
10

0
50

0

R
oo

tR
el

ax
at

io
n

Ti
m

e
[%

]

●

●

I II III IV IV

10
0

15
0

25
0

●

●

●

I II III IV IV

50
10

0
20

0

●
●
●

●
●

●

I II III IV IV

20
50

10
0

20
0

D
ua

lB
ou

nd
at

R
oo

t[
%

]

●

I II III IV IV

98
10

0
10

2
10

4

●

●
●

I II III IV IV

94
98

10
2

●

●●

●
●

●

●

I II III IV IV

94
96

98
10

2

Fi
na

lD
ua

lB
ou

nd
[%

]

●
●

●

I II III IV IV

98
10

0
10

2

●

●

I II III IV IV

99
10

1
10

3

●

●

●

●
●
●

I II III IV IV

99
10

0
10

1
10

2
10

3

Figure 11.14.: Impact of branching rules on instances of the fat tree topology. The results
of the first mentioned branching rule are compared to the results of the second mentioned
branching rule.

99

12. Performance of LP-Based
Heuristics

In this section the results of our initial LP-based heuristics’ performance assessment are pre-
sented. Instead of considering only one of fifteen instances per graph size, all combinations of
Steiner cost and edge capacity distributions are considered. The goal of this section is to inves-
tigate the performance of the LP-based heuristics that were introduced in Section 8 in terms
of runtime and solution quality and to establish both topology-independent and topology-
dependent observations regarding the trade-off between runtime and solution quality.

Sections 12.1 and 12.2 introduce the methodology and the computational setup respectively.
In Section 12.3 a global overview of the results is given which is then followed in Section 12.4
by a detailed discussion of the performance of each heuristic on each topology. This discussion
will yield a (topology-dependent) selection of heuristics to include in the final VirtuCast solver.
Table 12.1 lists the LP-based heuristics under discussion and introduces abbreviations used
throughout this section.

12.1. Methodology
The comparative investigation of LP-based heuristics within a branch-and-bound framework
is delicate, as the heuristics are guided by the employed branching and node selection rules
(see [Ach07]) and the heuristics’ results theirselves influence the branching by potentially
cutting off subtrees in the bounding step (cf. introduction of Section 6). The reliability of
the results therefore crucially depends on the employed methodology. As a consequence, our
experimental setup is guided by the following principles.

1. All heuristics are always called at the same nodes, such that the performance with re-
spect to a single given node can be compared.

2. The order in which heuristics are called does not influence the result of the execution of
any other heuristic.

3. The execution of heuristics should only influence the solver’s state to a minimal amount,
such that the solver does not implicitly learn information from the execution of heuris-
tics.

To comply with the first two points we have implemented a master heuristic within the SCIP
framework, that delegates the call sequentially to all LP-based heuristics. Only after having
obtained the result from all heuristics, the best solution found is returned to SCIP, such that
e.g. the primal bound is only updated after all heuristics have been executed.

100

FDR Heuristic FlowDecoRound (see Algorithm 8.1)
GD Heuristic GreedyDiving, (see Algorithm 8.4)

GSD Heuristic GreedySteinerDiving (see Definition 8.5)
FGSD Heuristic FastGreedySteinerDiving (see Definition 8.6)

MS Heuristic MultipleShots (see Algorithm 8.5)
MSS Heuristic MultipleShotsSquared (see Definition 8.7)

Table 12.1.: Abbreviations for LP-based heuristics.

With respect to the last point, instead of employing the (reliable) pseudo cost branching
rules that have been found most effective in Section 11, the GreedyBranch rule introduced
in Definition 5.13 is utilized. While this branching rule might be beneficial for some of the
heuristics, the author could not reliably determine the influence of the execution of separation
procedures on the pseudo costs within the SCIP framework [Ach09]. As the GreedyBranch
rule does not rely on pseudo costs and was implemented by the author, such side effects can
be ruled out when utilizing the GreedyBranch rule.

Another important methodological decision made is to disable the primal bound during the
execution of all heuristics. As discussed in Section 8.4, if a heuristic relies on LP diving,
then the construction can be aborted prematurely, once the dual bound exceeds the primal
bound, in case the objective value of a solution under construction is strictly bounded by the
dual bound of the LP relaxation. By disabling the primal bound, the general quality and the
general runtime of the heuristic can be measured, as it would otherwise not be possible to
know whether the heuristic would have produced a solution and of which quality it would
have been. On a similar note, the Algorithm PruneSteinerNodes is used for each heuristic to
(try to) improve the objective value, if a solution has been found. While this approach may
disagree with the formal definition and the design discussions of the heuristics (see Section 8),
it will actually allow to argue for the design decisions made.

12.2. Computational Setup
Having discussed the methodology above, we will now describe the exact computational setup
used. For each topology and each graph size fifteen instances are considered which are gen-
erated according to the Steiner cost and edge capacity distributions described in Section 10.2,
yielding 225 instances overall. As six heuristics are employed, the time limit for each experi-
ment is set to two hours.

The master heuristic, which calls all other heuristics, is executed with a frequency of 10,
such that it is executed at each node of depth t0, 10, 20, . . . u. To guarantee that each heuristic
is called at least once a time limit of 1000 seconds is enforced for each heuristic, such that the
solution construction is immediately aborted once this time runs out. To allow for evaluating
whether Algorithm PruneSteinerNodes should be employed, the objective value of the original
solution as well as the objective value after pruning are stored. Similarly, the runtime of exe-
cuting the heuristic itself and exexuting Algorithm PruneSteinerNodes is measured separately.

101

With the exception of using the GreedyBranch rule, the separation parameters of Section 11.4
are utilized.

12.3. Overview of Results
Figures 12.1 to 12.10 depict the results of the evaluation of the LP-based heuristics. The fol-
lowing measures are used to evaluate the performance: the frequency with which solutions
were constructed, the quality of the found solutions and the runtime. Following our methodol-
ogy, the quality of solutions found before and after Steiner nodes were pruned and the runtimes
for executing the heuristic and for pruning Steiner nodes will be discussed separately.

The evaluation will proceed as follows. First a general overview is given

12.3.1. Efficiency in Finding Solutions
Figures 12.1 and 12.2 depict the absolute number of found solutions and calls to the heuristic
and their ratio respectively. Considering the frequency with which solutions were found, we
note that on fat tree and IGen instances nearly each call yields a feasible solution for all
heuristics except FDR. On 3D Torus instances the median of finding feasible solutions still is
100% but more variance is evident. Considering the absolute number of found solutions in
Figure 12.1, patterns of unsuccessful calls, represented as black bars, emerge. Even though
this might be coincidential, it is reasonable to assume that these instances are either generally
hard to find solutions for or that some of the explored nodes, on which all the heuristics were
called, did not allow for constructing a feasible solution using only the Steiner sites that were
not a priori disabled in the branching. We note the following observation.

Observation 12.1: The LP-based heuristics are capable of finding solutions reliably across
all topologies and graph sizes.

12.3.2. Solution Quality
Figures 12.3 to 12.7 depict the solution quality after pruning Steiner nodes and the respective
improvement in the objective gap. Figure 12.3 gives an overview over the objective gap with
respect to the final dual bound, showing that for all instances a gap of around 5% can be ob-
tained (if a solution is found). As the main goal is to compare the performance of the heuristics
with each other, Figure 12.4 depicts the objective gap with respect to the best primal solution
found per instance. As can be directly observed, the (median) quality of solutions with respect
to this measure follows the order in which the heuristics’ results are presented on all instances.
Importantly, this observation agrees with the design criteria of the heuristics, such that GD per-
forms better than GSD which in turn performs better than FGSD. Similarly, by squaring the
probabilities to use a Steiner site in the MSS heuristic a (slight) improvement in the solution
quality can be observed. Clearly, the FDR heuristic exhibits the worst performance (even after
pruning) and we note the following observation.

102

Observation 12.2: The quality of solutions found generally decreases according to the
monotonic order: GD, GSD, FGSD, MSS, MS, FDR.

Considering the fact that the heuristics are executed multiple times at different nodes and
that at least MS(S) and FDR are randomized, the question arises whether these heuristics can
achieve solutions close to the best primal solution or whether there is an inherent qualitative
trade-off in using these. Figure 12.6 answers that question by depicting how close the best
solution generated by each heuristic comes to the overall best primal solution found (per in-
stance). With respect to this measure, the qualitative order already established becomes even
clearer. While GD (and to some extent GSD and FGSD) find the best primal solutions, MS
and MSS are generally off by 1% to 5%. As for each graph size 15 instances were considered
and the heuristics were called (multiple) hundred times on I and II, we draw the conclusion
that using MS(S) it is at least unlikely to come close to the optimal solution. Similarly, we can
state that it is unlikely for FDR to generate solutions within less than 20% to optimality.

Lastly, Figure 12.7 depicts the improvement achieved in the objective by pruning Steiner
nodes using Algorithm PruneSteinerNodes for each found solution. While the median im-
provement of the greedy diving heuristics is zero, the improvement exihibited especially by
MS lie substantially higher. Interestingy, since MS and MSS achieve a very similar perfor-
mance overall (cf. Figure 12.4), the leveling of their performance can be mainly explained
by Algorithm’s PruneSteinerNodes ability to reduce the objective value to a greater extent on
solutions generated by MS than by MSS. This confirms the intuitive idea behind the MSS vari-
ant, since the selection of Steiner sites to activate is more stringent. Based on this observation,
especially the runtime trade-off between using MS and pruning Steiner nodes and using MSS
without pruning will be of interest.

12.3.3. Runtime
Figures 12.8 to 12.9 present the runtime of the heuristics excluding and including the runtime
of Algorithm PruneSteinerNodes and Figure 12.10 depicts the runtime of Algorithm PruneStein-
erNodes.

Considering the runtime excluding pruning Steiner nodes (see Figure 12.8), it can be ob-
served that the runtime generally decreases according to the same order in which the quality
of solution decreases. The one exception to this observation is the poerformance of FGSD
on IGen instances having a substantially lower runtime than MSS. We nevertheless state the
following observation.

Observation 12.3: The runtime of the LP-based heuristics generally decreases according to
the same order in which the quality decreases, namely: GD, GSD, FGSD, MSS, MS, FDR.

Considering the runtime of the heuristics including pruning Steiner nodes (see Figure 12.9),
the same observation holds as the runtime of Algorithm PruneSteinerNodes is nearly the same
for all heuristics with the exception of FDR (see Figure 12.10). Importantly, the runtime
needed to prune Steiner nodes is non-negligible as it takes e.g. on the largest IGen instances
more than 40 seconds.

103

Considering the absolute runtimes without pruning Steiner nodes, we note that the runtimes
seemingly grow exponentially with respect to the graph sizes (cf. Figure 12.8). While we do
not extrapolate the corresponding factors, we note that this is to be expected at least on the 3D
torus and fat tree topologies, as for the graph sizes I to IV the number of nodes is scaled by (at
least) a factor of 2 (see Sections 10.3 and 10.4). Considering the IGen instances which grow
linearily in the graph size, the runtime growth is considerably less. This allows for stating the
following observation.

Observation 12.4: The experimentally measured runtimes of the LP-based heuristics sup-
port the theoretically obtained polynomial runtime bounds of Section 8.7.

Lastly, we notice that for some calls the runtime of GD, GSD and FGSD reaches the time
limit of 1000 seconds on 3D torus instances of graph size IV and V. While not separately
considered, this suggest that the respective heuristics’ executions were aborted. Therefore,
at least a fraction of the unsec:eval-heurisitcs-runtimesuccessful calls (see Figure 12.1) can
be assumed to be due to exceeding the time limit and not due to the heuristic’s inability to
generate a solution.

12.4. Detailed Topology-Dependent Analysis
While in the above section the general performance and runtime trade-offs have been as-
sessed, the heuristics’ performance is now evaluated on a per topology basis. This will yield a
(topology-dependent) selection of heuristics to include in the final VirtuCast solver.

12.4.1. Fat Tree
As established in Section 12.3.1 with the exception of FDR the heuristics always find so-
lutions. Thus, by considering the minimal primal distance depicted in Figure 12.6, we can
observe that GD finds high quality solutions for all fat tree instances. As the runtime of GSD
and FGSD are not substantially lower (cf. Figure 12.8), the GD heuristic will be isec:eval-
heurisitcs-runtimencluded in our final solver on fat tree instances. As the runtime of the MS(S)
heuristic lies significantly below the runtime of the GD heuristic (cf. Figure 12.8), while still
providing solutions off by 5% of the best primal solution (cf. Figure 12.4), these will also
be included. Thus, in case GD fails to produce a solution, a good solution might be found
using multiple executions of the MS(S) heuristics. Since the runtime of MS lies significantly
below the runtime of MSS for graph sizes IV and V, the MS heuristic will be applied on these
instances.

12.4.2. IGen
Considering the heuristics’ performance on IGen topologies, we first note that both the quality
of found solutions as well as the runtimes are equally distributed across all graph sizes (cf.
Figures 12.4 and 12.8). As again GD provides the highest quality solutions (cf. Figure 12.4

104

while the (F)GSD and MS(S) heuristics exhibit a similar runtime (cf. Figure 12.8) and the
runtime on even the largest instances generally lies below 60 seconds, the GD heuristic will
be employed on IGen instances.

As the runtime of the other heuristics when pruning is applied does not lie substantially
lower (cf. Figure 12.9), the MS heuristic will be used on IGen instances without pruning
Steiner nodes. Using the MS instance in such a way is based on the distinct runtime advantage
obtained without pruning (cf. Figure 12.8.

By a set of similar observations, the MS heuristic is selected to be included, but without
pruning Steiner nodes via Algorithm PruneSteinerNodes. This decision is justified by the
observation that MS still comes reasonably close to the best primal solution even without
pruning (cf. Figure 12.5).

12.4.3. 3D Torus
The performance of heuristics on 3D torus topologies the most complex to assess, as the
runtime of the greedy diving heuristics exceeds or comes close to the time limit of 1000
seconds (see Section 12.3.3). As in our final experiments a time limit of one hour is enforced,
employing the greedy diving heuristics GD and GSD on graph sizes IV and V may therefore
severely limit both the progress of the dual bound and the time left for finding solutions if
these heuristics fail to produce one.

Considering graph sizes I, II and III, we note again that the GD heuristic comes the closest
to the best primal solution found (cf. Figures 12.5 and 12.6), while runtimes are very similarly
distributed (cf. Figure 12.8). Furthermore note that the median performance achieved by the
MSS heuristic without pruning comes close to the performance of GD. On these instances
therefore both GD and MSS will be employed.

For graph size IV of 3D torus instances, we note that for the first time FGSD provides
a distinct runtime improvement over GD and GSD (cf. Figure 12.8 while the quality of the
solutions generated is only off by at most 0.3% with respect to the objective of the best solution
found without pruning Steiner nodes (cf. Figure 12.5). Therefore FGSD will be employed.
As MSS still provides a lower runtime if pruning is enabled compared to the runtime of FGSD
when puning is disabled (cf. Figures 12.8 and 12.9) and as MSS yields solutions only 2% off
the best primal solution found (cf. Figure 12.6), MSS is included on graph size IV.

Considering the largest graph size, FGSD is included by the same argument used for in-
cluding it on graph size IV. However, as the runtime of MSS surpasses the runtime of FGSD
on this graph size (cf. Figure 12.8), instead of MSS the MS heuristic is employed. Since the
improvement of the quality of the solutions found by MS lies around 1% (cf. Figure 12.7),
Algorithm PruneSteinerNodes will be utilized to try to improve the solutions’ quality.

12.4.4. Chosen Parameter Settings
In the above sections the performance of the LP-based heuristics have been discussed for
each topology and a selection of heuristics were chosen to be used for the different graph
sizes. This selection of heuristics is summarized in Table 12.2 and enriched with frequency
and offset values which togehter determine the depth levels at which the heuristics are called.

105

Given an offset O and a frequency F , heuristics are called at each node of the following depth
levels tO,O ` F,O ` 2F,O ` 3F, . . . u, where depth level 0 denotes the root level of the
branch-and-bound tree.

Even though we will not discuss the offset and frequency settings in detail, we note that by
utilizing an offset of greater 0 increases the chances that the heuristic will be called more than
once initially. Furthermore, by setting the frequency to 0, the heuristic will only be called at
the depth level defined by the offset.

GD GSD FGSD MSS MS FDR

O F P - O F P O F P O F P O F P

FAT TREE
I-III 0 20 ˆ - - 2 10 X - -

IV-V 0 0 ˆ - - - 5 10 X 0 0 X

IGEN I-V 0 10 ˆ - - - 2 20 ˆ -

3D TORUS

I-III 2 10 ˆ - - 5 15 ˆ - -

IV - - 2 10 ˆ 5 15 X - -

V - - 2 10 ˆ - 5 15 X -

Table 12.2.: Selection of heuristics for final VirtuCast solver. The following abbreviations are
used. O: offset, F: frequency, P: apply PruneSteinerNodes

106

EVALUATION OF HEURISTICS: NUMBER OF CALLS & FOUND SOLUTIONS

Fat Tree IGen Torus

I

0
20

00
50

00

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

0
80

0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
20

0
40

0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II

0
10

0
20

0
30

0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
50

10
0

15
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

0
10

00

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III

0
10

20
30

40

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
20

40

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80
12

0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R
IV

0
2

4
6

8

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
5

10
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
1

2
3

4
5

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

V

0.
0

1.
0

2.
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
2

4
6

8

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
0

1.
0

2.
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

Figure 12.1.: Number of the (un)successful calls to the heuristic for each instance. The grey
bar indicated the number of successful calls that yielded a feasible solution. The
black bar indicates the number of calls in which no solution could be obtained.

107

EVALUATION OF HEURISTICS: FREQUENCY OF FOUND SOLUTIONS [%]

Fat Tree IGen Torus

I

● ● ●● ● ●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

40
60

80
10

0

●

●

●

●

●

●

●

●

●

●

●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
40

60
80

●●●

●

● ●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80

II

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

50
70

90

●

●

●

●

●

●

●

●

●●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
40

60
80

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

40
60

80
10

0
III

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

80
85

90
95

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

60
80

10
0

●

●

●

●
●
● ●

●●

●

●

●

●

●

●

●
●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80

IV

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

60
80

12
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

60
80

12
0

●●

●

●

●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80

V

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

60
80

12
0 ●

● ●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80

● ●● ●● ●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80

Figure 12.2.: Frequency (in percent) with which the LP-based heuristics have found solutions.

108

EVALUATION OF HEURISTICS: OBJECTIVE GAP (AFTER PRUNING) [%]

Fat Tree IGen Torus

I

●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●
●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●● ●●●●●●

●●●
●
●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●
●●●
●
●●
●●●●●●●●●●●
●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●●●
●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●●
●●●●●●●●●
●
●●●●●●●●
●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●
●●●●
●●
●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●

●●●●
●

●●●●

●●●

●●●●

●

●

●

●●
●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●●●
●●
●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●●
●●●●●●
●●●●●●●●●●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●●●
●
●●●●●●●● ●●●●

●●
●●●
●
●●●●
●
●●●●●●
●●
●●●●●●●●●●●●
●
●●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●●●●●●●
●
●●●●●●●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●
●●●

●●

●
●●

●●●

●●●

●

●

●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●●
●

●

●

●●

●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●

●

●

●●

●●●●●

●

●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●

●●●●●●
●
●
●●●●●●●●●●
●
●●●●●●
●
●●●
●
●●●●●●
●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●
●
●●
●

●●
●●
●●●●●●●●●●
●
●●●●●●
●●●●●
●
●
●
●●●●●●●●●
●
●
●●●●●
●
●●●
●
●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●
●●●●●●●●●●
●
●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●●●●
●●●●●
●●●
●
●●●●
●●●●●
●●●
●
●●●●
●●●●●●
●●●●●●●
●●
●
●
●●
●●●●●
●
●●●●●●●●●
●
●
●●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●
●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●
●●
●
●●●●●●●●●●●●●●●
●●
●●
●
●●●●●●
●●●●●●
●
●●●●●●●●●●●●●
●
●●●
●
●●●●●
●●
●
●
●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●
●
●
●●●●
●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●●
●●
●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●
●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●
●●
●●
●●●
●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●
●
●
●
●●
●
●
●
●●●●
●
●●
●●●●●●●●●●
●●●
●
●●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●

●●
●●●●
●
●●●
●●●●●●●●
●●●●●●●●●
●●●●
●●●
●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●
●
●●
●●●
●●●●●●●●●●
●●●
●●●●●●
●●●
●
●
●●
●
●●●●●●
●●●●●●●●
●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●

●●●●
●
●●●●
●●
●●
●●●●●
●●
●●●●
●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●
●●●●
●●●
●
●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●●●
●
●●●
●
●●●
●●●●
●●
●
●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●
●●
●●●
●
●●●
●●●●●●●●●●●●●●●
●
●●●

●
●●●●●●●
●●●
●●
●●
●
●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●
●
●●
●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●
●●●●●●
●
●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●
●
●●●
●●●●●●●
●●
●
●●
●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●
●●●●●●●
●
●●
●●
●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●
●●
●●●●
●●
●●●●●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●●
●●●
●●
●
●
●
●●●●
●
●
●
●
●
●
●●
●
●
●●●●●●●●●
●
●●●
●●
●●●●●●●●●●●
●
●
●●●●●●
●
●●●●●●●
●●●
●●
●●●●●●●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●
●●●●●●●●●●
●●
●

●

●

●
●●●●●
●●
●
●●●●●●

●

●●●
●
●●●●●●●
●
●●
●●
●

●

●

●●●●
●
●●●●●●●
●●

●●
●
●●●●●●
●
●●●●
●
●
●
●●●
●●●●●●●●●●

●●●●● ●●●●

●●
●
●●●●●●●●●●●
●●●●●●●
●●
●●●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II ●●
●●
●●●●●●
●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●● ●●●●●●●●●

●●●●●●
●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●
●

●

●

●
●●●●
●

●●●
●
●●●●
●
●

●●

●
●
●

●

●
●●●●

●

●
●●
●●●●●
●●

●●●

●
●●
●●●●●
●
●●●
●

●●●●●●●●●●●
●●●●●●●
●
●●●
●
●
●●●●●●●●●●

●●●●●●●●●
●●●
●●●

●

●●
●●●●
●
●
●
●●●●●●●
●
●
●
●●
●●●●●●●●●●
●●●
●
●
●●●●
●
●
●
●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●
●
●
●

●●●●
●●
●

●●
●●
●●●●●●●

●●●●●
●●●●●
●●●●●●●●●
●
●●●●●●●
●
●
●
●●●
●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

2
5

20
10

0

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●
●●●
●
●●●
●
●●●
●●
●●●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●●●
●●●
●●●
●●
●
●
●●●
●●●●●●●●●●●
●●
●
●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●● ●●

●●
●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●
●●
●●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

●●●●●●
●●●●●●●●●
●●●
●●●●●●●
●
●●
●
●●●
●
●
●●●
●●
●
●●●
●
●●●●●●●●
●
●●
●
●●●
●
●●●●●
●
●●
●●
●
●●●●●
●●
●●●
●●●●●●●
●
●●●●●●●●●●
●
●

●

●●●●●
●
●●●●●●●●
●●
●●
●
●●●
●
●
●●
●
●
●
●
●●●●●●
●
●
●●●
●●●
●
●●
●●
●
●●●
●
●●●●●
●
●●●
●●●●●●
●●●●●●●
●
●●●●●
●
●
●●●●●
●●●●●●●
●
●●
●●
●●●●
●●●●●●
●●
●
●●
●
●●●
●
●●●●
●

●●●●●●●●●●
●●●●●
●
●●●●●●●
●●●●
●●●
●
●●●
●●●

●
●
●●●

●
●●●●
●●●
●●
●●●●●●
●●
●●●
●●
●●●●●
●
●●●
●●●●
●
●●
●●●●●●●
●
●●●
●●
●●●
●●
●●●
●
●●●
●
●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●
●
●
●
●●●
●
●●
●
●
●●
●
●●●●●●●●
●●●●
●●●●
●●●●●●
●●
●●
●●
●
●
●●●
●
●●●
●
●●
●
●
●●●●
●●
●
●●
●

●●
●
●●
●●
●●
●
●
●
●●
●●●
●
●●●●
●●●●
●●●●●
●
●●●●
●●
●
●
●●●●●●
●●●●●
●
●
●●●
●●
●
●●●
●●●●

●●●●●●
●
●
●●●
●
●●●●●●
●
●●●●●
●

●

●
●
●●●
●
●

●
●
●●
●●●
●
●●
●
●●

●
●●●●
●●
●●●●●
●

●

●

●●●
●

●
●●
●

●●
●
●●
●●●
●

●
●
●
●
●●
●●
●
●

●

●●●
●●●
●
●●●
●
●
●
●
●
●
●
●●●●●●●
●●
●●●●
●
●●
●●
●
●

●
●

●
●●●●
●●
●●
●●●●●●●●
●●●●●●●●
●
●

●●●●●
●●●●●●
●
●
●
●●
●●●●
●
●●
●
●●●●
●
●

●

●●●●●
●●●
●●●●●
●●●●●●●●●●
●●●●●
●●
●●●●
●
●
●●●
●●
●
●
●●
●
●
●●●●●
●●●●
●
●●●●●●
●
●●●
●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●
●
●●●●●●●●
●●
●●●●
●
●
●●●●●●●
●
●●●●●●●●●●●
●●●●●
●
●●
●
●●●
●●●●●
●
●
●
●●●●●●
●
●●●●
●●●●●
●
●●
●●●●
●
●
●●●●●●●●
●
●●●
●
●●
●
●

●

●
●
●●●●
●●●●●
●
●●
●
●●

●
●
●●●●
●●
●
●●●●●●
●
●●
●
●●●●●●●
●●●●●
●
●●●
●●●●●●●●●
●

●●
●
●●●●●
●●
●●●●●●●
●●●
●●●●●●●●●●
●●●●
●
●●●
●●
●
●
●
●●
●●●
●●●
●●●●
●
●●
●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●
●
●
●
●●
●
●●●●●●●
●
●
●
●
●●
●●●●

●
●
●●●●●
●●
●
●●
●●●●●●●
●
●●●●●
●●
●●
●
●●●●●
●
●●●●●●
●
●●●●●
●
●●
●●●●●●●●●
●●
●●●●●●●●
●
●●●●

●

●●●
●
●●●
●●●
●●●●●●●●
●●●●●●
●●
●
●●●●●●
●
●●●●●●
●●●
●
●●●●●
●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●
●
●
●
●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●
●
●●●●
●●
●●●
●
●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●
●
●
●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●●●●●●●●

●●
●●●●●●●●●●
●
●
●●
●●●●●●●
●
●●
●●●●●●
●●●
●
●●
●
●
●●●●●●●●●●●●●●●
●●
●
●●●
●
●●
●●●●
●●
●
●●●●
●●
●●
●
●●●●●●●
●
●●●●●●●●
●●●
●
●

●●●●
●
●●
●●●●
●
●●●●●
●
●
●
●●●●●●●●
●●●●●●●●
●●●●
●
●●●
●●
●●●●●●●●●●●
●
●●●●●
●●●●
●
●●
●
●●●●●●●
●●●●●●●●●●
●●●●
●
●●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●
●
●●
●
●
●●
●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●
●●●●●
●●●●●●●●●
●
●●●●
●
●●
●
●
●
●

●
●●
●●●●●
●
●●
●●
●●●●●●●
●●●●●●●
●
●●●●●●●
●●●●
●
●●●●●●
●
●●●●●
●
●●●●●
●●●
●
●●●●●●
●
●●●●●
●●●●●●
●●●●●●●
●
●●●
●●●
●●●●●
●●●
●●●
●
●●●●●●●●●●●●●●
●●
●
●
●●●●●
●
●
●
●●●●
●

●
●●●●●●
●

●●●●●
●●

●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

III ●●

●
●●●●●●
●
●
●●●●
●
●●
●●● ●●●

●●●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●
●●●●●●
●
●
●
●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

1
5

20
10

0

●●●●●●●●
● ●●

●●●●●●●
●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●

●●●
●●
●
●●●●
●●●
●
●
●
●
●●●

●
●●●●
●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
2

2.
0

20
.0

●●
●
●
●●●
●
●●
●●●●
●●●
●●●●
●●
●
●

●●●●●●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

IV
●●
●

●

●●
●●●●●
●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

2
10

50 ●●●●●●
●●●●●●
●●●●●●

●●●
●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

V ● ●

●
●

●

●
●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

2
10

50 ●

●●●
●●
●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

Figure 12.3.: Objective gap (in percent) with respect to the final dual bound after Algorithm
PruneSteinerNodes was called per call, if a solution was found.

109

EVALUATION OF HEURISTICS: PRIMAL GAP (AFTER PRUNING) [%]

Fat Tree IGen Torus

I

●●●●
●●●
●●●●●●●●
●●●●●
●●●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●
●
●●●●
●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●
●
●●
●●
●
●
●●
●●●●●●●●
●●●●
●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●
●●
●
●●●●●●●●●●
●●●
●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●
●●●
●
●●●
●●●●●
●
●●
●●●●●●●
●●●●●
●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●●
●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●●●●
●●
●
●
●
●
●●
●
●●●
●●●●●●●●●
●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●
●●
●
●●●●●●●
●
●●●
●●●●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●
●
●●●●●
●
●
●
●●
●●●●●●
●
●

●●●●●●
●
●●●●

●
●
●●
●●
●● ●●●●

●●●●●
●●
●●●
●●●●●
●●●
●
●●●●●●●●●●●●●●●
●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●●
●●●●●
●
●●●●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●
●
●●●
●●●●●●●●●●
●
●●
●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●●●●
●
●
●●●●●●●●
●
●●●●●
●
●
●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●
●●
●
●●

●

●●●●●●●●●
●
●●
●
●●●
●
●●●●● ●●

●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●
●●●●●●●●●●●●
●●●●●
●
●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●
●
●●●
●●●●●●
●●●●●●●
●●●●●●●●●●
●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●
●●●●●●●●●
●●●●
●
●
●
●
●●●●
●●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●
●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●
●●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●

●

●●●●●●●
●
●●
●
●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●
●
●●
●
●

●

●
●●
●
●●

●●●●●
●●●●●
●
●●
●●●●
●
●
●●●●●●
●●●●
●
●●●●●
●●●●●●
●●
●●●
●
●●●●●●●●●●●●●●●
●●
●
●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●●●
●●●
●●●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●
●●
●●●
●●
●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●●
●●●
●
●
●●●●●●●●●●
●●
●●●●
●●●●●●●●
●
●●●●●●
●●●●●
●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●
●
●●●●
●
●
●●●●●
●●●●●●●●●●●●●
●
●●●●
●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●
●
●●
●●●●●●●●●●●●●●
●●
●
●●●

●●●●
●

●●●●

●●●

●●

●

●●

●

●

●●

●●

●●
●
●●●●●●
●●●●●●
●
●●●●●●●●
●
●●●
●●●●
●
●●●
●●●●●●●●●
●
●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●
●●●
●●●●●●●●●
●
●●●●●●●●
●●●●●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●●●●
●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●
●
●
●
●
●
●●●●
●●●●●●●
●●●●●●●●
●
●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●
●
●●●
●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●
●●●●●●
●
●
●●●●
●
●●●●●
●
●
●
●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●●
●
●●●●●●●●
●
●●●●●
●
●●●●
●●●●●●●
●
●
●●●
●
●●●●●●●●●
●
●●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●●
●●
●
●
●●●
●
●●●●●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●
●●
●●●●●●●●●
●
●
●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●
●●
●
●
●
●●●●●
●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●
●
●
●●●●
●
●●●●●●●● ●●●●

●●
●●●
●
●●●●
●
●●●●●●
●●
●●●●●●●●●●●●
●
●●
●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●
●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●
●●●●●
●
●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●
●
●●●●●●●●
●
●●●●●●●
●
●●
●
●●●
●●
●●●●●
●●●●●●●●●●
●●●
●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●
●●●
●●
●
●
●●

●●

●

●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●
●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●●
●
●●●
●●●●●●●●
●●●●●●
●
●●●●●
●
●
●
●●●●●●●●
●
●
●●●●●●●●
●●●
●●
●●●●●●●●
●
●●●●●
●
●●
●●●
●
●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●
●●●●
●
●●●●●
●●●
●
●
●
●●
●

●
●●●●
●●●
●
●
●●●

●
●●
●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●
●●
●
●
●
●●●●●●●●●●●●●●
●●●
●●
●●●●●
●●●●●●●●
●
●
●●
●●●●●●●
●●●●●●
●
●●●
●
●
●●●●●●●●●●
●
●
●
●●

●

●●
●
●●
●●●
●●●●●●●●●
●●
●●●●●●
●
●●●●●●
●
●●●
●
●●●
●
●●●●●
●
●
●●●
●●
●
●●
●●
●
●●
●
●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●
●
●●●
●
●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●
●●●●
●●●●●●●●
●
●●
●
●●●●
●●●●●●●●●
●
●
●
●
●●●●
●
●
●●●●●●
●●●●●
●
●
●
●●●
●●●●●●
●●●
●
●●●●●
●●●●●●
●●●
●
●
●●
●
●
●●
●●●●●●●
●●
●
●●●●●●
●●
●
●
●●●
●●●●●●●●
●

●
●●●●●●●●●●
●
●
●●
●●●
●●●●●●●●
●●●
●●●●●
●●
●●●●●●●●●
●●●●
●
●●●
●●●●●●●●●●

●
●●●
●●●●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●

●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●
●●●●●●
●
●●●●
●
●●●●●●●●●●●●●
●
●●●●
●●●
●●●●●●●●●●
●
●●●
●
●●
●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●
●
●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●
●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●
●●●
●
●
●

●
●
●●●●
●●●
●●

●●

●●●●●●
●●●●●●●●●●●●●
●
●
●
●
●●
●●

●

●

●
●●●●●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●
●●●●●
●
●●●●
●
●●●●
●●●
●●●●●
●●
●●●●
●●●●
●
●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●
●

●●
●●
●●●
●●●●●●●●●●
●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●●
●
●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●●●
●●●●●●●●●●●
●
●
●●●●

●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●
●
●
●●
●●
●
●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●
●
●●●●●●●

●

●●
●
●●●●
●
●
●
●●●●●●●●
●
●●
●●
●
●●●●●●●●

●●●●●●●●
●
●●●●●●
●
●●
●
●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●
●●●
●● ●●

●●●
●●
●
●
●
●
●●●●●
●●
●●●●●●●●●●
●●●
●●●●●
●●●●
●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●●
●●●●
●
●
●●●●
●●●●●●●●
●●●●●●●●●
●
●●●
●
●●
●●●
●●●
●●●●●
●
●●
●●●●●●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●
●●
●
●●
●
●
●●●
●
●●●●●●
●
●
●
●
●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●
●●●●●●●●●●
●●●
●●●
●●●●
●●
●●●
●●●
●
●●●●●
●
●●
●●●●●●●●
●●●
●●
●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●
●●
●●●●
●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●
●●●●●●●●
●●●●
●●●
●
●●
●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●
● ●●●

●●●●●●
●
●
●●●●●
●
●●●●●●
●●
●●●●
●●
●
●
●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●
●
●●
●●●●●●
●
●●●
●
●●●●
●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●
●●
●●
●
●
●●
●
●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●
●
●
●
●●●●●●●●●●
●●●●●
●●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●
●
●●
●●●
●●●
●
●●●
●
●●●●●●●●
●●
●●●
●●
●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●
●●●●
●●
●●●●●●●●
●●●●●●
●●●●
●●
●●●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●
●
●●●●●●●
●
●●●●●●●
●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●●●●
●
●●●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●●
●●●
●●●●●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●
●●●●●●●
●●
●●●●●
●●
●●●
●
●●●●●
●
●●●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●
●
●●●●●●●●●●
●
●●
●
●●
●
●●
●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●
●●●●
●
●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●
●
●●
●●●●●
●
●●
●●
●
●●●
●●●●
●
●

●
●
●●
●●●●●●●●●●●●●
●●●●●
●●●
●●
●
●●●●●●●●●●●●●●

●
●●
●
●
●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●●●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●●
●
●
●
●
●
●

●●●●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●
●●●
●
●●●●●
●
●●●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●
●
●
●●
●●●●
●●
●●●●●●●●
●●●●
●
●●●●●●●●●
●
●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●
●●●●●●
●●●●
●
●●
●●●
●●
●
●

●●●
●
●●●●
●
●
●

●●
●
●
●
●
●
●●
●
●●●●●●●●●●●
●
●●●
●
●●●●
●
●●●
●
●●
●●●●●●●●●
●
●
●
●●
●●●●●●
●
●●●
●
●●●●
●
●●●
●●
●●●●●●
●●●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●
●●●
●
●
●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●
●●
●
●●●●
●●●●
●
●●
●●●●●
●
●●●
●
●●
●
●
●
●

●

●

●
●●
●●
●●
●
●●●●●●

●

●
●●●
●●
●

●
●
●
●●●●
●
●●
●

●

●●●
●
●●
●
●●
●
●
●
●

●

●

●●●●
●
●
●
●●●
●●
●●

●● ●

●
●
●●●
●
●●●●●
●●
●
●
●
●
●

●

●●
●
●●
●
●
●●●
●
●
●
●●●
●
●●●●●●●●●

●●●●● ●●●

●●
●
●●●●●●●●●●●
●●●●●●●
●●
●●●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II
●●●●●●●●●●●●●●●
●●
●●●●●●
●
●●
●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●● ●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●●●● ●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●
●

●●●●
●
●
●
●●●●
●●

●●
●
●
●
●
●
●●●●

●
●
●●
●●●●●
●●
●●●
●
●
●
●
●●●●●●
●●
●
●
●●
●

●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●
●●●●

●●●●●
●●●●●●●●●●●
●
●●●
●
●●●●●●
●●●●
●●●●●●●●●●●
●●●●
●
●
●
●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●
●
●●●
●
●●●●●●●

●●●●
●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●
●
●●
●●●●●●●
●
●●
●●●●●●
●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●● ●●●●●●

●
●●●●
●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●
●●●●●●●●●●
●
●
●
●●●
●
●●
●
●●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●

●●●●●●
●●●●●●●●●●●●
●●●
●●●●
●
●
●●●●
●●●●●●●
●●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●
●●●
●
●●●●
●●●●●
●●●●●●●
●●●
●
●
●●●
●●●
●●
●●
●
●●
●
●●●
●●●●●●●●
●
●●●
●●●●●●●●●● ●●●●●●●●

●●
●●●
●
●
●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●
●●●●●●●●●●●
●
●●●●
●
●●●●●
●●
●

●
●●●●●●●●
●
●
●●●●●●
●●●●
●
●●●●●●●●

●
●●●●●●●●●●●●
●●●●●
●●●

●

●●
●●
●●●●●●
●●
●●●
●●●●
●●
●●●
●●●●●●●●●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●
●●●●●
●●●●●●●
●
●●
●
●●●
●
●
●●●●
●
●
●
●●●●
●
●●
●
●●●
●
●
●●
●●
●
●●●●●
●●
●●●●●●●●
●
●●●●●●●●●
●●

●●●●●
●
●●●●●●
●●●
●
●●●
●
●
●●
●
●
●●●●●●
●
●●●●●
●
●●
●●
●
●●●●●●●●
●●●●●●●●●●●
●
●●●●●
●●●●
●●●●●●●
●
●
●●
●●●
●●●●●●●
●
●●
●
●●
●
●●●●
●
●●●●●●
●●●●●
●
●●●●●
●●●●
●●●
●
●●●
●●●

●
●
●●●

●
●●●●
●●●
●●
●●●●●●
●●
●●●
●●
●●●●●
●
●●●
●●●●
●
●●
●●●●●●●
●
●●●
●●
●●●
●●
●●●
●
●
●●●
●●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●
●
●
●
●●●
●●●
●
●●
●
●●●●●●●●●●●●●
●●●●●
●●
●●
●●
●
●
●●●
●
●●●
●
●●
●
●●●●
●●●●
●
●
●
●●
●●
●●
●
●
●
●●
●●●
●
●●●●●●●
●●●●
●●●●●●●●
●●●●
●●●●●
●
●●●
●●●●
●●●●
●
●●●
●
●●●●●●●●●●●
●●
●
●
●●
●
●●
●●●●●
●
●●

●
●●●●●
●●●●●
●●●●●●●
●

●
●
●●
●●●
●
●
●
●
●●●●
●●●●
●●
●
●●
●
●
●●
●
●
●●●●●
●●
●●●●
●
●●
●●
●

●

●
●
●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●
●●●
●
●●
●●●●
●
●●●●●●●●
●●●●●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●
●
●●●
●●
●
●●●●
●●●●●●
●
●●

●
●
●●●●
●●●●●●●●
●●
●
●●●●●
●●●
●●
●
●●●
●●●●
●●●●●
●
●●
●
●●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●
●
●●●●
●
●
●
●●
●●●
●●●
●●●
●
●●
●●●●●●●
●●●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●
●●●●●
●
●
●
●
●●
●
●●●●●●
●
●
●
●
●●
●●●●

●
●
●●●●●●
●
●●●●●●
●
●●●●●
●●
●●
●
●●●●●●●●●●●●
●●
●
●●●●●●
●●
●●●
●●●●●●●
●
●●
●
●●●●●
●●●●●●●
●●●●●
●●
●
●●●●●●
●
●●●
●
●
●●●●●●
●●●●●●●●●●●
●
●●
●
●●●
●
●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●
●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●●●●
●
●●
●●
●●●●●●●
●
●●
●●●●●●●●●
●
●●
●
●
●●●●●●●●●●●●●●●●●
●●●
●●●
●
●●
●●●●●●
●
●●●●
●●
●●●●
●
●●●●●●●
●
●●●●●●●●●●●
●
●
●●●
●
●●●●
●●●
●
●●●●●
●
●
●
●●●●●●●●
●●●●●●●●
●●●●
●●●●
●●
●●●●●●●●●●●
●
●●●●●●
●●●●
●
●●
●
●●●●●●●●
●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●
●●●●●●
●●●●●●●
●
●●●●●●
●
●●
●
●●
●
●
●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●
●●●●
●
●●
●●
●
●
●
●●
●●●●●
●
●●●
●●
●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●●
●
●●●●●●
●
●●●●
●●●●●●
●●●
●
●●●●●●
●
●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●
●●
●●
●●●●
●
●●●●●●●●●●●
●●●
●
●
●●●●
●
●●
●●●●●●●
●
●
●
●
●●●●●●
●
●●●●●
●●
●

●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III
●●
●
●●●●●●●●●●
●●●●●
●●●●●●
●●●●

●●

●
●●●●●●
●
●

●
●●●●●●
●
●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●
●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●
●●● ●●●●●●● ●●●●●●●●

●●●●●●●●
●
●●
●
●●●●●●●
●
●
●●
●
●●●
●
●●●●● ●●

●●●
●
●
●
●●
●●●●
●●●●●
●
●●
●
●
●●●

●

●●●●
●●
●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●
●
●

●
●
●
●●
●●

●●

●

●

●

●●●
●
●●●●
●
●
●●
●

●

●●●
●●
●●
●
●
●●●●●

●●●● ●●●●●

●●
●●
●●●●●●●●●●●●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R
IV

●●●●●●

●●
●

●

●●●●●●
●
●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●●
●
●●
●●●●
●●
●
●●●●●●
●●

●●●●●●●
●
●
●●●●●●●●●●●●

●●●
●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

V
●

●

●●● ●●

●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●● ●

●●●●●

●●●
●●●
●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

Figure 12.4.: Objective gap (in percent) after Algorithm PruneSteinerNodes was called with
respect to the best heuristical found primal solution.

110

EVALUATION OF HEURISTICS: PRIMAL GAP (BEFORE PRUNING) [%]

Fat Tree IGen Torus

I

●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●
●●●
●
●●
●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●●
●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●●●●●
●
●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●
●●●●
●
●●●●●●●●
●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●
●●●
●●●●
●●●●
●
●●●●
●●●
●
●●●●●
●
●
●
●●●●●●
●●●●
●●

●
●
●●●●●●●●●●●●●
●
●●●●
●●
●●●●●
●
●●●●●●
●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●
●
●

●

●●
●
●
●
●●
●

●●●●●●●

●
●●●
●
●
●●
●
●●●●●●
●
●●●●●●●
●●●
●
●●●● ●●●

●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●
●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●
●
●●●●●
●
●●●●
●
●●●●●●●
●
●
●
●●●●●●●●
●●●●●●●

●●
●●●●●●●●●
●●●
●
●●●●●
●●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●
●
●●
●●
●
●
●
●
●●

●

●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●
●●●●●●●●●●●●
●
●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●●
●●
●
●●●
●
●●●●●●
●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●
●●
●
●●●●●●●●●
●●●●●●●

●

●

●

●●●
●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●
●
●
●
●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●●●●
●
●●●●
●●
●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●●●
●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●
●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●
●●●●
●
●●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●
●
●●●
●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●
●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●
●
●●●●●
●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●●●●●●●●
●●●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●
●●
●●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●
●●●●
●
●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●
●
●
●
●
●
●●
●●●
●
●●●●
●●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●
●●●
●
●●●●●●
●●●
●●
●●●●●
●●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●
●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●

●●●●●●●
●
●●●●●●●●●●
●●●●●
●●
●●●
●●●●
●
●
●●●●●●●●
●●●●●●●●
●
●●●●●
●●●●●●●●
●
●●
●●●●
●
●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●
●●●●
●
●●●●
●●●●●●
●
●●●●●
●●●●●●●●●●
●●●
●●
●●●●●●
●●
●
●●●●●●●●●●●●
●
●●
●●●
●●●●●
●●●●●●●●
●
●
●●●●●●●●●●●●●●
●
●
●●●●●
●
●●●●●
●
●
●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●
●●●
●
●
●●●●●●●●●●●
●●●●
●
●
●
●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●
●●
●
●●●
●
●
●
●
●
●●●●
●●
●●●

●
●●●
●●
●
●●●●●●
●●●●●
●●●
●
●
●
●
●
●●●
●

●
●●●●●
●
●
●
●●●●●
●●●●●
●
●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●
●
●●
●
●●●
●
●●●●
●
●●
●●●
●●
●●●●●●
●●●●●●●●●●●●●●●
●
●●●
●
●●
●●
●
●●●●●●●●●●●●
●●
●
●●●●
●
●
●
●
●●●●
●●●●
●
●
●●
●●
●
●●●
●
●●
●●●●●
●●●●●
●
●●●●
●
●
●
●
●
●●●●●
●●●●●
●●●●●●●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●
●
●
●●●
●●●●●●●●
●
●●●●●●
●

●●
●●●●●●●●
●●
●●●
●●
●●●
●
●●●●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●
●
●
●
●●
●
●●●
●●●●
●●●
●
●●●
●●●●
●●●
●
●
●
●●●●●
●●
●
●●●●
●
●●●●●
●
●●
●●●●●●
●
●●●
●●
●●
●
●
●
●●●●●
●
●●●●●
●
●
●
●●●●
●
●●
●●
●

●●●●●●
●
●

●
●●●●
●●●●●●
●●●
●
●
●
●●●●
●
●●
●
●
●

●

●
●●●
●●
●

●●●●
●●●
●●●●●
●
●●●
●●
●●
●●
●●●
●
●●

●

●
●
●●●●
●●●
●
●
●●●●●
●●
●●●●
●●
●●
●
●
●
●●
●●●
●●

●
●●
●
●
●
●
●●●●
●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●
●
●
●●●●
●●
●
●●
●●
●
●
●
●●●●●
●●
●●●
●
●●●●
●
●
●
●
●●
●
●
●●
●●
●●●●
●
●

●●●

●

●

●

●●●
●●
●●●●●●
●
●
●
●●
●●●●●

●●

●●●
●●●●●●●
●
●
●
●●
●●●●

●●
●●●●●●
●●

●
●●●●●●
●●
●
●●
●
●●
●
●●
●
●●●●●
●●
●●●●●
●●●●
●●●●●●●
●
●●●●●●●●
●●●●
●
●
●●●●
●●
●
●●●●●●
●●●●
●●
●
●
●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●
●
●●●●
●●●●
●●
●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●●●
●
●●●●●
●
●●●●●●●●●●●●●●●
●
●
●●●●
●●●
●
●
●●●●
●●
●●●
●
●●
●●●●
●
●●
●
●●●●●●●
●
●
●●●●
●
●●●●
●●●●●●
●●
●
●
●●
●●●
●●
●●●●●●●●●
●●●●
●●●●●●●●●
●●●●

●
●●●
●
●●
●●●●
●
●●●
●●●●●●
●
●●●
●
●●●●●●●

●
●●●
●
●
●
●
●●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●

●●●
●
●●●●●●●●●●●●
●
●●
●●●
●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●
●
●
●
●●

●

●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●
●
●
●●●
●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●
●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●
●
●●
●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●
●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●●●
●
●
●
●●
●●●●
●●●
●●

●●

●●●●●●
●●●
●
●●
●
●
●●●
●●●●●●
●●
●
●
●●
●●
●
●

●
●●●●●
●●●●●
●●●●●●●●●
●●●
●●
●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●
●●●●
●●●●
●●
●●●●
●●●●
●
●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●
●

●●
●●
●●●
●●●●●●●●●●
●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●●
●
●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●●●
●●●●●●●●●●●
●
●
●●●●

●
●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●

●

●●
●
●●●●
●
●
●
●●●●●●●●
●
●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●
●
●●
●
●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●
●●●
●● ●●

●
●
●●
●●
●
●
●
●
●●●●●
●●
●●●
●●●●
●●
●●●
●●●●
●●●
●
●●●●
●
●
●●●●
●
●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●●
●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●
●
●●●●
●
●●●●●
●●●
●●●●●
●
●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●
●●●●
●
●●●●●●●●●●
●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●
●●●●●●●●●●
●●●
●●●
●●●●
●●
●●●
●●●
●
●●●
●
●●
●●●●●●●●
●●●
●●
●●●
●●●●
●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●
●●●
●
●●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●●●●●●●●
●●
●
●●●●●
●
● ●●●

●●●
●●●●
●
●
●●●●●
●●
●●●●●●
●●
●●●●
●●
●
●
●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●
●
●●
●●●●●●
●
●●●
●
●●●●
●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●
●
●
●
●●
●
●
●●
●
●
●●●●●●●●
●
●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●
●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●
●
●●
●●●
●●●
●
●●
●
●●●●●●●●
●●
●●●
●●
●●●
●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●
●●●●●●
●●●●
●●
●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●
●●
●
●●●●●●
●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●
●●●●
●
●●●●●●●
●
●●●●●
●●●●●●●●●●●
●
●●●●●●
●●
●●●
●
●●●
●●●●●●●●●●●●●●●●
●
●●●●●

●

●
●●●●●●●
●●●●
●●
●●
●
●●●●●
●
●●●●●
●
●
●
●●●
●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●
●
●
●
●●●●●●
●
●●
●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●
●●●●●●
●
●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●
●●
●
●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●●●●●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●
●●●
●
●●●●●
●
●●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●
●●
●●●●
●●
●●●●●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●
●
●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●
●
●
●

●●●
●
●●●●
●
●
●
●
●
●
●●
●●
●
●●●●●●●●●●●●
●
●●●
●●
●●
●●●●●●●●●
●
●
●
●●
●●●●●●●
●
●●●
●
●●●
●●●
●●●●●●●●
●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●
●●●
●
●●●●●
●●●●
●
●●
●●●●●
●
●●●
●
●●
●●●●

●

●●●

●

●●●●●
●

●

●

●

●●●

●

●

●

●●●

●

●
●●●●●●●

●

●●●●●
●
●●●●●●
●
●●

●

●
●●●
●●
●●

●
●
●
●●●●
●
●●
●

●

●●●
●
●●●
●
●●
●●●●

●

●

●

●●●●

●

●

●

●●●

●●●●

●

●

●

●
●
●●●
●
●●●●●
●●
●
●
●
●
●

●

●●
●
●●
●
●

●
●●●●

●

●

●

●●●●

●

●●●●●

●●●

●

●

●

●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●
●●●●●
●
●●●
●

●●●●●
●
●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II
●●●●●●●●●
●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●

●

●
●●●●
●●
●●●●

●●
●●
●
●
●●

●
●●●●●●
●●
●●●●●●
●
●●●●●
●
●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●
●
●●●

●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●
●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●
●
●●
●●●●●●●
●
●●
●●●●●●
●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●● ●●●●●●

●
●●●●
●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●
●●●●●●●●●●
●
●
●
●●●
●
●●
●
●●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●

●●●●●●●
●
●●●●●●●●●
●●●
●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●
●●●
●
●●●●
●●
●●●
●●●●●●●
●●●
●
●
●●●
●●●
●●
●●
●
●●
●
●●●
●●●●●●●
●
●●●
●●●●●●●●● ●●●●●●●●

●●
●●●
●
●
●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●●
●
●●●●●
●●
●

●
●●●●●●●●
●
●
●●●●●●
●●●●
●
●●●●●●●●

●
●●●●●●●●●●●●
●
●●●●
●●●

●

●●
●●
●●●●●●
●●
●●●
●●●●
●●
●●●●
●●●●●●●●●●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●
●●●●●
●
●●●●●●
●
●●
●
●●●
●
●
●●●●
●
●
●
●●●●
●
●●
●
●●●
●
●
●●
●●
●
●●●●●
●●
●●●●●●●●
●
●●●●●●●●●
●●
●●●●●
●
●●●●●●
●●●
●
●●●
●
●
●●
●
●
●●●●●●
●
●●●●●
●
●●
●●
●
●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●
●●●●
●●●●●●●
●
●
●●
●●●
●●●●●●●
●
●●
●
●●
●
●●●●
●
●●●●●●
●●●●●
●
●●●●●
●●●●
●●●
●
●●●
●●●

●
●
●●●

●
●●●●
●●●
●●
●●●●●●
●●
●●●
●●
●●●●●
●
●●●
●●●●
●
●●
●●●●●●●
●
●●●
●●
●●●
●●
●●●
●
●
●●●
●
●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●
●
●
●
●●●
●●●
●
●●
●
●●●●●●●●●●●●●
●●●●●
●●
●●
●●
●
●
●●●
●
●●●
●
●
●●●●●●
●●●●
●
●
●
●●
●●
●●
●
●
●
●●
●●●
●
●●●●●●●
●●●●
●●●●●●●●
●●●●
●●●●●
●
●●●
●●●●
●●●●
●
●●●
●
●●●●●●●●●●
●●●●
●
●●
●
●●
●●●●●
●
●●

●
●●●●●
●●●●●
●●●●●●●
●

●
●
●●
●●●
●
●
●
●
●●●●
●●●●
●●
●
●●
●
●
●●
●
●
●●●●●
●●
●●●●
●
●●
●●
●

●

●
●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●
●●●●●
●
●●
●●●●●
●
●●●●●●●●
●●●●●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●
●●
●
●
●●●
●●
●
●●●●
●●●●●●
●
●●
●
●
●●●●
●●●●●●●●
●●
●
●●●●●●●
●●
●●
●
●●●
●●●●●●●●●
●
●●
●
●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●
●
●●●●
●●●
●●
●●●
●●●
●●●
●
●●
●●●●●●●
●●●
●
●●●●●●●●
●
●●●●●●●●●●●●
●
●●●
●●●●●
●
●
●
●
●●
●
●●
●●●●
●
●
●●●●
●●●●

●
●
●●●●●●
●
●●●●●●
●
●●●●●
●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●
●●
●●●●●●●
●●●
●
●●
●
●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●●
●
●●●
●
●
●●●●●●
●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●
●●
●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●
●
●●●●●●●●●●
●
●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●
●
●●
●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●
●●●
●
●●●●●
●
●●●●
●
●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●

●
●●●●
●●
●●●●
●●
●
●
●●

●
●●●●●●●
●
●
●
●
●
●●●
●●●
●

●
●●●

●
●
●
●
●●
●●●●●●●●●
●
●●
●
●●
●●●●●●●
●●●
●●●
●
●●
●
●●
●●
●

●●
●●●●●
●●●●
●
●●
●
●●●●●
●●
●●
●
●●●
●●●
●●●●●●●●●
●
●

●

●●●●●●
●
●●●●
●
●
●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●
●
●
●
●●●●●●●●●
●●●
●
●●●●
●
●●●●●●●●●
●
●●●●●●●
●
●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●
●●●
●
●●●●●●●
●
●
●●●

●

●●●●●
●
●●●●●●●
●
●●●
●
●●●
●
●●
●
●●●

●

●●●
●
●●●●●●●

●

●●
●
●

●

●●
●
●●●

●

●●●
●●●●
●
●●●●●●●
●
●●●
●

●

●●●●●
●
●

●
●
●
●●

●
●●●●●●●●●
●●
●●●●
●
●
●●●
●●
●●●●●●
●●●
●
●
●●
●●
●●●
●
●

●
●
●●●●
●●●
●
●
●●
●
●

●
●
●●
●●●●●●●
●
●
●
●
●

●
●
●
●
●●

●
●
●●●●●●
●
●
●
●●●●●●
●●●
●●●●●●●●
●●●●
●
●
●●●●●●

●

●●●●●●●●●●●
●●

●

●
●●●●
●
●
●
●●
●●

●

●

●

●
●●●
●●
●●

●●

●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●
●●
●
●●●●
●
●●●●●●●●
●
●●●●●●●●●
●●●●
●●●●●
●●
●
●●
●
●●●●●●
●●●
●
●
●
●
●●●●●
●●
●●●●
●
●●●
●●●

●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III
●●
●
●●●●●●
●●●●●
●●●
●●
●
●●●
●
●
●
●●●
●●●●
●●●●

●● ●●●
●●●●

●
●●●●●●●
●
●

●
●●●
●
●●●
●
●●●●● ●●●●

●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●
●●● ●●

●●●●●●●●
●
●●
●
●●●●●●●
●
●
●●●●●
●
●●●●● ●

●●●
●
●
●
●●
●●●●
●●●●●
●
●●
●
●
●●
●

●●●
●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●

●
●
●
●●
●●

●●

●

●

●

●●●
●
●●●●
●
●
●●
●

●

●●●
●●
●●
●
●
●●●●●

●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●
●
●
●●
●●●●●●●
●●●●●
●●
●● ●●●●●●●●●●●●●●●●●

●

●
●●●●●●
●
●
●●●
●
●●●●
●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R
IV ●●

●

●●
●

●

●●●●●●●●
●

<
 0

.1
1

5
50

50
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●●
●●
●●●●
●●
●
●●●●●●

●●●●●●●
●
●
●●●●●●●●●●●●

●●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

V
●●● ●●

●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●● ●●

●●●●●

●●●
●●●
●●●

●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●

●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

Figure 12.5.: Objective gap (in percent) before Algorithm PruneSteinerNodes was called with
respect to the best heuristical found primal solution.

111

EVALUATION OF HEURISTICS: MINIMAL PRIMAL GAP [%]

Fat Tree IGen Torus

I
● ●

● ●

●

●

●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

● ●●

● ●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II ●

●●

●●

●

●

●

●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

● ●
<

 0
.1

1
5

50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

● ●●

●
●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III
●

●
● ●●

●

●

●
●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●
●●

●

●
●

●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

IV
●

●

●
●

●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●

●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

V
●

●●● ●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

Figure 12.6.: Minimal objective gap (in percent) after Algorithm PruneSteinerNodes was
called with respect to the best heuristical found primal solution that was obtained
by the heuristics per instance.

112

EVALUATION OF HEURISTICS: OBJECTIVE GAP IMPROVEMENT BY PRUNING [%]

Fat Tree IGen Torus

I
●

●

●

●

●●

●●

●

●●●

●

●
●

●
●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●●●

●
●●

●●●

●

●

●

●
●

●●●

●●
●●
●
●●

●

●

●
●

●

●

●

●

●
●
●
●
●
●

●●●●●

●

●●●

●●
●

●

●
●

●

●

●
●
●
●

●
●

●●●

●

●

●

●●

●

●

●
●

●

●●
●●

●

●●

●
●
●

●

●

●

●

●
●●
●
●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●●

●
●
●

●●

●

●●●

●

●●●●●

●

●

●

●●

●

●

●●●●

●●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●●●

●●

●●●

●

●
●
●

●●
●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●●●

●
●
●

●●

●
●

●

●
●●

●

●●●

●●

●●●

●●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●
●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●●

●
●

●
●

●
●

●

●

●

●
●
●●

●

●
●●

●
●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●●

●

●●●

●

●

●●

●●●

●
●

●

●
●●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●●
●

●
●●
●
●●

●●

●●
●

●

●

●●

●

●●●●●●

●

●

●●

●●

●●

●●

●●

●
●

●●

●

●

●●●●
●

●●

●

●●

●
●

●

●
●

●●

●

●

●●

●●

●

●
●●●

●
●

●●

●

●
●●
●
●
●
●
●

●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●●
●
●●

●

●●●

●

●

●

●

●●●

●●
●

●

●●
●

●
●●
●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●
●●●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●●●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●●●

●●

●●●●

●
●

●●●●

●

●

●
●

●●●

●

●

●●●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●●●

●

●
●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●
●●
●

●

●●

●
●

●

●●●

●

●

●
●
●
●

●

●●
●

●

●
●
●●
●
●●

●

●
●
●

●

●
●●

●

●
●●

●

●

●

●
●
●●●
●
●●●

●

●

●
●
●

●

●

●

●●

●●

●

●

●●

●

●
●

●
●●

●●
●

●

●●

●

●
●

●
●

●

●●

●●

●

●●
●
●

●
●

●
●

●
●●●●

●

●
●
●

●

●
●

●●●

●

●●
●
●

●●
●●

●

●●●●
●●

●

●
●●

●
●

●●

●●●●
●

●●
●
●●●

●

●
●

●
●

●
●
●
●●

●●

●
●

●

●

●

●

●

●●

●●

●
●

●●

●

●
●●●●
●
●

●
●●
●

●

●

●●
●
●

●●●
●

●

●●●
●

●

●

●

●
●●

●

●

●
●

●
●●●●
●

●

●
●●●●●●●
●
●

●

●
●●●

●

●●●

●

●

●

●

●

●●

●

●
●
●●

●

●●●●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●●●
●
●

●

●●

●●●

●●
●
●

●

●

●

●●

●●●

●●

●●
●●

●

●
●
●

●
●●

●

●

●

●

●
●

●●

●

●

●

●
●●
●

●●
●
●

●

●

●

●●●

●

●

●

●

●

●
●●●
●
●
●

●
●

●
●

●

●

●
●

●

●●

●

●●

●●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●●
●

●●●

●

●●

●

●
●●

●

●
●
●

●●

●

●●●

●●

●

●●●●

●●

●
●
●
●
●

●

●

●

●

●●

●
●

●

●●●●

●

●

●

●

●●●●●

●
●●
●
●●
●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●●●●

●

●

●

●

●●●

●●●

●

●

●

●
●

●

●●

●●
●●
●

●●●

●

●

●

●

●●

●

●

●
●

●

●●●

●●

●●

●

●

●
●
●

●●

●

●

●

●●●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●

●●●
●

●

●●
●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●●●

●

●

●
●

●
●
●

●●●

●

●

●

●

●

●
●

●●

●●●
●●

●

●●●

●

●●
●
●
●

●

●

●

●●

●●

●
●
●

●●
●
●●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●●●●

●
●

●

●

●●

●

●●

●●

●

●

●

●●●●●

●

●

●

●

●

●
●
●

●
●

●
●

●●

●

●
●

●

●●●

●

●

●

●

●

●●●
●
●

●●

●

●
●
●●●●●●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●●

●

●

●

●●●●●

●●

●●●
●

●

●●●●●●●●●●

●

●
●

●●

●

●●
●
●

●●
●
●●●●●●

●
●
●
●

●●

●
●

●●●
●

●

●

●
●

●

●●

●●

●

●

●

●

●
●●●
●
●
●
●●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●●
●

●

●●●
●
●

●

●

●●

●
●
●●

●

●
●

●●

●

●●

●●

●
●

●

●
●

●

●
●

●

●
●

●●●

●

●

●

●

●

●●
●
●

●
●●●●●
●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●●●

●

●●

●●

●

●
●

●

●

●
●
●

●
●
●●●

●●

●

●

●●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●●

●

●●●●

●
●
●

●
●●

●

●

●

●●
●●

●
●●●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●●

●●

●●

●

●

●

●
●

●

●
●
●
●
●

●●

●
●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●●●

●

●

●

●

●

●●

●

●

●●●
●
●●

●

●

●●

●●●

●

●

●●

●●●
●
●

●●

●●●

●

●●

●●

●

●

●●

●
●
●
●

●

●
●●
●
●
●

●

●

●

●
●●
●
●

●

●

●
●

●
●

●
●
●●

●

●●●
●

●

●

●

●

●

●●●
●

●

●●

●

●

●
●
●

●●

●
●●

●●

●
●

●
●

●
●
●

●

●

●

●
●

●

●●

●

●

●●●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●●●
●●

●

●●

●●●●

●●

●

●

●

●

●
●
●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●●●
●
●
●●●

●●

●

●

●●

●

●

●
●
●●
●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●●

●

●

●●●

●
●●

●

●
●

●
●●

●

●

●●●

●
●●
●
●

●

●
●

●

●

●
●●

●

●●

●

●

●●
●●●●
●
●●
●●

●●

●●

●

●

●

●

●●

●

●
●
●
●
●
●
●

●
●

●

●●●●
●

●●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●
●
●●
●

●

●

●

●

●
●●●
●

●●

●●
●●
●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●●●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●●

●
●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●
●
●
●

●
●
●●●

●

●

●
●

●

●
●

●●

●●●

●

●

●
●
●

●●

●

●●

●●

●

●

●

●

●

●●
●●

●●●●
●

●●

●●●●
●●
●
●

●
●●

●
●

●

●
●

●●

●

●●●●●

●

●●
●
●

●

●

●

●●

●

●
●●

●
●●

●

●
●●

●

●

●

●
●
●●

●

●

●
●

●

●●
●
●●●
●
●●
●

●

●

●

●●
●●

●
●

●●
●●

●
●●

●
●●
●

●●

●

●

●●

●
●
●

●

●●

●●

●●

●

●
●
●●
●
●
●

●●●

●
●

●●

●

●

●

●
●
●●

●

●

●●●

●
●

●

●●

●
●

●
●
●
●●

●

●●

●●

●

●

●

●

●●●
●
●

●

●●●●●

●
●

●

●
●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●●●
●
●●●
●

●

●●

●

●
●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●●
●

●●

●
●

●

●
●●
●

●

●●●
●●
●

●

●●●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●●●●

●●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●
●
●●
●

●

●

●

●

●●
●

●
●●
●

●

●
●
●
●
●
●

●

●
●

●

●●
●

●
●

●

●

●
●●
●●

●

●●●

●

●

●●
●

●●

●

●
●●

●●

●

●

●
●

●

●

●●

●
●●
●
●
●
●
●

●

●

●
●

●
●●●
●
●

●

●
●

●

●

●

●

●
●

●●●
●●

●

●
●●

●

●

●

●●

●

●

●
●

●●●
●

●

●

●

●●

●●

●
●
●
●

●
●

●●
●

●

●

●

●●
●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●●
●●

●

●●●

●

●
●
●●
●

●●
●

●●●

●

●

●●

●

●
●

●●

●

●
●
●

●●

●
●
●

●
●

●●●

●
●

●

●

●
●

●●
●●

●
●
●
●
●

●●
●●

●
●
●

●

●
●

●
●
●
●●

●
●

●
●●

●
●

●●

●

●

●

●

●●
●●●

●●

●
●

●●
●

●●

●
●●●●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●
●
●
●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●●

●

●●●
●
●
●

●

●

●
●

●

●

●●
●
●
●●●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●●●
●
●●
●
●

●●

●●
●
●

●●

●

●

●

●●
●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●
●

●
●●●

●

●

●

●

●
●

●
●

●●●

●
●

●
●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●
●●

●

●
●
●
●

●
●

●●●
●

●

●

●

●●
●
●

●
●

●

●

●
●

●●

●
●●●●

●

●●
●

●●

●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●●●●
●
●
●
●

●
●
●
●

●

●

●

●

●●

●

●●

●
●
●

●
●
●●●

●
●

●
●●

●
●
●●●

●

●●●●
●●
●

●
●
●
●
●
●

●
●●●●

●●●
●●

●●
●

●●●

●
●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●
●

●
●

●
●●
●

●

●

●●●

●

●

●

●
●
●
●
●●●
●
●●

●●

●
●
●●

●

●●●

●

●

●●●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●
●●
●

●●

●

●

●
●

●

●●●
●
●

●●

●●●
●

●
●

●
●●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●
●

●●

●●

●

●
●

●

●●
●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●●

●●
●
●
●
●

●●

●●●

●
●

●

●

●

●●
●

●
●
●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●
●
●

●
●

●

●
●●
●

●

●

●●

●
●
●●●●●●●●●●●●●●
●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●
●●●
●
●

●●

●

●
●

●

●
●
●
●

●

●●
●
●●
●●●

●●
●
●
●●
●●
●
●

●
●●
●
●
●
●

●
●●

●

●
●
●●●

●
●
●●●
●

●
●

●
●
●●
●
●●●●●
●

●

●

●

●
●
●
●
●●●●
●

●

●●
●
●●

●

●
●

●●
●
●

●

●
●●
●●
●

●
●

●
●

●
●

●

●
●●●
●
●
●

●

●

●

●
●
●●●

●

●

●●
●
●●
●
●

●
●
●●●
●

●

●
●
●
●

●

●

●
●

●

●
●●
●●●●

●

●
●
●
●●
●●
●●
●
●

●
●

●
●

●

●●
●●

●

●
●
●

●
●

●●
●
●
●
●
●
●
●●●

●

●●

●

●
●

●

●●
●

●
●

●●
●●

●●
●●●
●

●
●

●●

●
●
●●

●

●

●●

●●

●

●

●●
●●
●
●●
●●●

●

●
●

●●
●
●

●●●

●

●●●●

●

●
●●●
●
●
●
●
●

●●●
●
●

●
●

●●

●
●

●

●
●

●

●●

●
●

●●

●

●

●

●●

●
●
●

●

●

●●
●●

●
●
●●●

●●

●●●●
●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●
●

●●●

●
●●
●

●●

●
●●●
●
●
●
●
●●
●
●
●

●

●
●
●
●

●

●

●

●

●

●
●
●
●●

●

●●
●

●●

●

●●

●

●

●
●
●
●
●●
●●●●
●●
●●

●●●●●●●●

●
●●
●●

●●

●

●●●●

●●

●●●

●
●●●●
●●
●●
●●

●

●
●

●
●
●●●●●
●
●●●●●
●●
●●●●●
●
●
●●●●
●●

●
●●

●

●

●

●
●

●

●

●●
●●
●●
●
●
●

●

●●●
●

●

●

●
●●●●
●●●●●
●
●
●
●
●
●
●●
●
●

●

●

●
●●

●●

●

●

●

●

●
●
●
●●●
●●
●

●

●

●●●●
●

●●

●

●

●

●

●
●
●
●

●

●

●
●●●

●

●
●●●
●●

●

●

●

●●●

●

●
●
●
●●●

●

●●

●
●

●

●

●●
●
●●●
●

●

●
●
●●●●
●●●
●
●
●

●

●

●●
●●

●

●

●●

●●

●

●●
●●
●

●●
●●●●

●

●

●

●
●●
●
●
●

●

●
●
●

●

●

●

●●
●●●●

●
●

●
●

●
●
●●
●●
●

●

●

●●●●
●●

●

●

●●

●

●
●

●

●●

●●
●
●
●
●

●●

●

●●

●
●
●
●●

●
●●
●
●
●●●

●

●
●
●
●
●
●

●

●

●

●●●●
●

●

●
●

●
●

●
●●
●
●

●●

●
●

●
●
●

●
●●
●
●
●
●
●
●
●
●

●
●
●

●●

●

●
●
●

●

●●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●
●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●●
●
●

●

●●
●
●
●●

●

●

●

●

●

●

●
●
●●

●
●●●
●

●

●
●●
●●

●

●●

●
●
●●

●●●

●
●

●
●
●

●

●

●
●
●
●
●
●

●

●●
●
●●
●
●

●

●●

●●

●

●●●
●
●●●●

●
●

●
●

●

●●●●●
●

●

●

●

●●●

●
●
●
●
●
●
●

●

●
●
●
●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●●
●
●
●

●

●●

●
●

●

●
●
●●
●
●●

●

●
●
●
●●

●

●
●
●●

●

●

●

●

●

●●●

●

●
●●
●●
●
●●

●

●●

●
●

●

●
●
●
●

●
●

●

●
●
●

●

●

●●

●●●●
●●

●
●
●●

●

●
●
●
●

●●

●●
●

●

●
●

●
●
●

●

●

●
●

●
●

●

●
●
●●

●

●
●
●
●
●

●

●

●●●
●

●●●

●●
●

●●
●
●
●●

●

●
●●
●●●●●●●

●
●

●

●

●

●●●●

●
●
●●

●

●

●
●
●
●●

●

●●
●●
●

●

●●

●
●
●

●

●●
●

●

●

●

●
●

●

●●

●
●
●

●

●●●
●●

●
●
●

●

●●●●
●●●
●●

●
●●●
●

●

●

●
●
●
●●
●
●
●●●●
●●
●
●
●
●

●
●

●

●

●

●●
●
●●
●
●

●

●

●

●
●●
●

●
●●

●

●●●
●
●●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●
●

●
●●
●
●
●

●

●
●●●●●
●●
●

●

●
●
●

●

●

●●
●
●
●

●

●●
●

●

●
●
●

●

●

●●●●●
●●

●
●

●

●

●

●●●●●●
●
●
●
●●●●●●●
●
●
●●

●
●●●
●●
●

●
●
●●●
●
●
●
●
●●
●
●●●●
●
●●
●●●●●●●
●●●
●

●
●●
●●●●
●

●●●●●●●●
●●
●
●●●●
●
●●●

●
●●
●
●●●●
●●●
●

●●●●●●
●●
●●
●
●●●
●

●●
●
●●●●●●●●

●

●●
●
●

●
●●
●

●

●●●

●

●●●
●

●
●
●

●
●
●
●

●

●●

●●

●

●●
●●
●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●
●

●●

●
●●

●

●

●●
●●●
●
●
●
●●
●
●
●

●
●
●

●
●●
●

●
●
●
●

●

●
●

●
●
●
●●

●●
●
●

●

●

●

●
●●

●

●●●
●
●

●●
●
●●

●

●●●
●
●
●
●●
●
●●
●

●
●●●
●
●

●
●●
●
●

●

●
●

●

●

●●

●
●
●
●

●
●●●●

●●●

●

●

●

●●
●
●
●
●
●
●
●
●
●●●
●
●
●●●●
●
●●●●
●
●

●●
●●
●●

●
●

●●●

●

●

●
●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●●
●
●
●●●

●

●●

●
●

●
●●
●
●●
●
●
●
●●

●

●
●●

●

●●●
●●

●

●
●

●●●●

●●

●

●
●
●
●●

●

●●●
●●

●●

●●

●

●

●
●

●
●
●

●

●

●

●

●●
●
●
●
●
●●
●●

●
●

●

●●
●●

●●●●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●
●
●
●

●
●●

●

●

●

●

●

●
●
●●
●
●

●●
●●●●

●

●●●●
●
●●

●

●

●

●
●
●

●
●●

●

●
●
●

●

●
●
●
●

●●

●

●

●

●
●
●
●●
●●

●
●
●

●●

●

●
●
●●●
●●
●
●●●
●
●

●

●

●
●
●
●
●
●
●●●●

●
●
●
●
●

●
●●●●●●
●
●
●

●

●

●
●●
●
●
●
●

●
●
●
●
●
●
●
●

●

●
●

●●
●●

●

●
●

●
●

●●
●
●
●●
●

●
●
●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●
●
●
●
●
●
●
●●
●
●
●

●●●
●●
●

●
●

●●
●

●

●
●

●
●
●●

●
●
●

●

●
●
●●●●●
●
●●

●●
●

●●

●
●

●

●
●
●

●

●

●●

●

●
●●

●
●

●●●●
●
●●
●●
●

●
●●●●
●●
●
●●●

●
●
●●
●
●

●
●

●●
●

●
●●

●
●

●

●
●
●
●
●●●
●
●

●

●

●

●

●
●

●

●
●
●
●
●●

●

●●
●●
●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●
●
●

●
●●
●

●●
●
●●

●

●

●

●

●
●
●

●
●
●
●
●●
●
●●●

●

●
●

●
●
●
●

●
●
●
●●
●

●
●
●●●

●

●●

●
●

●●

●●

●

●●
●

●

●

●

●
●●●
●
●
●●

●
●●
●
●

●
●
●
●

●●

●

●

●
●

●●
●
●●

●●

●
●
●●●●
●●
●
●
●
●
●
●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●
●●●

●

●●●

●

●●
●●

●
●●

●

●●

●

●
●
●

●
●
●
●
●
●
●
●●

●

●
●
●●
●
●
●
●

●
●
●
●

●

●
●

●
●
●
●

●

●

●●
●

●
●
●
●
●●
●
●
●

●

●

●

●

●
●●

●

●

●
●●
●
●
●
●

●

●
●
●●

●

●●●●
●
●
●

●●

●

●

●

●

●●

●

●
●
●●●
●

●

●●●

●

●
●

●
●●

●●

●●
●●
●
●●
●

●

●

●
●
●

●

●

●●●●

●

●
●●

●

●●
●●●
●

●
●●●
●●

●

●
●●
●

●

●
●●

●
●●●●●
●
●●●●
●

●●
●
●

●

●
●
●
●
●

●

●●●
●
●
●
●
●

●
●
●

●●
●
●
●
●

●

●
●
●
●●●

●
●●
●

●●
●

●●●

●

●

●●

●●

●

●
●

●
●●●●

●●

●

●●
●●
●●
●

●
●
●
●
●●

●●●
●
●
●

●

●

●●
●

●
●

●●
●
●●

●

●
●●

●

●

●●●

●

●
●

●●●●
●
●

●

●●●

●
●
●
●●
●●●

●

●
●
●
●
●

●

●
●●

●
●●

●●

●
●●
●

●●
●●
●
●●
●●

●
●

●

●
●

●

●

●
●

●
●

●

●
●
●

●
●●

●

●

●
●●
●●
●
●

●
●●
●
●

●

●

●
●●

●

●●

●
●

●●●
●

●
●
●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●●
●
●

●

●●

●

●

●
●●●
●
●
●

●●

●

●

●●●
●

●
●
●●
●
●
●
●
●
●●

●

●

●

●

●●●

●

●

●
●

●
●

●
●
●
●
●

●
●●
●
●
●
●

●

●
●
●

●
●
●
●
●●●

●

●
●

●

●
●
●
●
●

●
●●
●
●
●●

●
●
●
●
●
●●●

●
●
●

●

●●
●
●

●
●

●
●
●●

●
●
●

●●

●

●
●●

●
●
●

●
●
●

●

●

●

●

●

●
●●●●
●●
●●

●

●
●
●
●
●
●
●●
●●
●●
●
●

●

●
●
●

●
●●

●●
●

●

●

●

●
●
●
●
●

●
●
●

●
●

●
●●●

●●

●

●

●

●
●

●

●●

●
●
●●
●
●●
●

●

●●●

●
●
●
●

●

●

●
●●
●
●●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●●
●●
●
●
●

●●
●

●

●

●
●
●
●
●

●
●
●

●
●

●

●●
●
●
●

●

●
●●

●●
●
●
●
●●

●
●
●
●

●●
●
●
●
●
●

●

●
●

●
●●●
●
●
●

●●

●
●
●

●
●
●

●
●

●

●

●
●●
●
●

●●
●●

●
●
●●

●

●

●
●
●

●
●●

●
●

●●

●
●●●
●●

●

●

●●●●●

●

●
●●
●
●

●

●

●

●●

●

●

●
●
●●●

●

●
●
●
●
●

●
●
●

●

●●●
●

●

●

●

●
●
●
●●●

●

●
●●
●

●
●
●●

●●

●
●
●
●●

●
●●
●

●
●

●
●
●●

●

●●●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●
●
●

●●

●●
●
●

●
●

●

●
●●
●
●

●

●●●
●
●●●
●●
●
●

●
●●
●

●●
●
●

●

●●●

●
●
●●
●
●●

●

●

●●
●
●

●

●
●

●

●

●

●
●

●●
●
●

●●

●●
●
●●
●●●
●

●

●
●●
●
●
●●

●

●

●●

●
●

●

●

●
●
●

●●

●
●
●●
●●●

●

●●●

●

●●●●

●●●

●
●
●

●

●
●●

●

●
●
●
●
●

●

●

●

●●
●

●

●●
●

●
●
●●
●
●

●●●

●

●
●

●●
●●●
●

●

●●●

●
●

●

●
●

●●

●●

●

●
●
●
●
●
●
●●
●
●●
●
●●●
●
●
●
●
●●●
●
●●
●

●

●
●

●

●
●

●●
●
●●
●●●
●
●●●●
●
●●
●
●●
●

●

●
●

●
●
●
●
●
●●
●
●

●
●●
●
●
●
●

●

●

●
●
●
●●

●

●
●●
●●

●

●

●

●

●

●
●●
●●●
●

●

●
●
●

●

●
●
●

●●●●

●
●
●
●

●

●
●
●●

●

●●

●
●

●●

●●●●●
●●●●
●
●
●●
●
●
●

●

●●●

●
●●

●
●
●●
●

●
●

●

●●

●

●●●●●
●
●

●

●
●
●
●

●

●
●

●

●
●●
●
●●●●
●
●
●

●●●●
●●
●

●

●

●
●

●

●
●
●●
●

●

●

●
●●

●
●●●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●

●

●

●

●

●●
●

●
●●●●●●●●
●

●
●

●

●
●●
●

●●●
●●●●●

●

●●

●

●

●
●

●●●●

●

●
●

●

●

●●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●
●

●●●

●
●
●

●●

●

●●●●

●

●

●●
●

●

●●●●

●●●

●

●

●●

●

●●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●●

●●
●
●
●

●

●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●
●
●
●
●

●

●
●

●●●

●●

●

●

●

●

●●●
●

●

●●

●

●●

●

●

●

●

●
●
●

●●●

●●

●

●●

●
●

●

●

●●

●

●●

●●

●●

●

●●

●
●

●

●●●

●●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●●

●●

●●●

●

●
●

●
●

●●

●

●

●

●●●●

●
●

●

●●
●
●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●●●●●
●

●

●

●
●

●
●
●●
●

●

●

●●●●

●
●
●
●

●●

●

●●

●

●●●●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●

●
●
●●

●

●●
●

●

●
●
●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●

●

●

●●

●●

●●
●

●

●

●

●

●

●

●
●

●
●●●

●

●●●

●●●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●

●
●

●●●

●

●

●

●

●
●●●●

●

●
●

●●●

●●

●

●
●
●
●●

●

●●

●

●

●

●●
●

●●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●●●
●
●

●

●
●

●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●●●●

●●

●

●

●

●●

●

●

●●●●

●

●

●
●

●●●

●

●

●
●

●●

●

●

●●
●
●●

●

●●
●

●
●
●
●●
●

●

●●

●

●●●
●●

●

●

●
●
●

●

●
●

●
●
●

●●

●

●
●●

●

●
●●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●
●●●●
●

●

●
●●

●

●●●●●

●●

●

●●●

●

●

●
●
●

●

●●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●

●

●●●●
●●
●

●

●

●

●
●

●

●

●●
●

●●●

●
●
●
●●

●

●

●●

●

●●

●
●

●●●
●
●

●

●●

●
●

●●●●
●
●●●

●

●
●

●●
●

●

●●●●●

●
●●

●●

●●
●●

●

●

●●

●

●

●

●

●
●
●

●●

●●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●
●

●

●●

●

●
●
●

●
●

●

●●

●●●●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●
●
●●●

●●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●●

●
●●●

●●

●
●●●
●
●●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●●
●
●

●●
●
●

●

●
●

●

●

●

●

●●

●

●

●●●●

●

●

●●
●

●
●●
●●

●

●
●
●

●●●

●

●
●

●

●

●

●

●

●●
●
●

●●●

●

●

●●

●

●●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●
●●

●

●

●
●

●

●●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●●●
●

●
●
●

●

●

●

●

●
●●

●
●●
●

●
●
●●
●
●●
●●
●

●

●

●
●
●

●

●

●●●
●●

●

●●

●

●
●●

●

●

●●

●

●●
●●●●●
●
●

●
●

●

●

●
●
●

●

●

●●

●
●●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●
●●
●

●●

●●

●

●●

●

●
●
●●●
●
●
●
●●●●●●
●
●

●

●

●

●

●
●

●
●

●
●

●●
●●●

●

●●

●

●

●

●
●
●●

●●●

●

●●

●

●
●●●

●

●●

●

●●●●

●

●●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●
●

●
●

●
●

●

●●

●●
●●

●

●

●
●

●

●●

●

●

●

●●

●

●●●

●●

●

●●
●
●

●

●

●●

●

●

●
●●
●

●●

●

●●

●
●
●

●
●

●
●

●

●

●
●

●●●

●
●

●

●

●

●●
●
●

●

●●●
●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●●

●●

●

●
●
●●

●
●
●

●
●●●●

●

●●
●●
●

●

●

●
●

●
●●

●●

●

●●

●
●

●

●

●●●

●

●●●●

●
●
●

●●
●

●

●●
●
●●●●

●

●

●

●

●

●

●●
●
●

●●
●
●
●

●●●

●
●●
●

●

●

●
●

●

●

●
●●●

●

●●
●

●●

●●

●

●

●

●

●

●
●
●
●
●
●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●
●

●

●

●
●
●●

●

●

●

●
●
●

●

●

●●●

●

●

●

●●

●●

●

●

●
●

●
●

●

●
●
●
●
●
●
●

●

●
●●
●
●●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●
●
●●
●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●●

●
●●
●●
●
●

●

●
●

●
●
●

●

●

●●

●

●

●●

●

●●

●

●●●●
●●

●

●●

●

●●●

●●

●●
●●
●
●
●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●
●●
●

●

●
●
●

●●
●

●
●

●

●

●
●●●

●

●●●●
●●●●

●●

●
●●
●●

●
●
●

●
●●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●●●

●
●●

●

●
●●

●
●
●●
●

●●

●

●
●

●

●
●

●

●

●●

●

●

●
●●

●

●●

●●

●●
●●●
●

●●

●

●●

●●
●●

●
●●
●

●

●

●
●
●
●
●
●
●
●

●

●
●

●●
●

●

●●
●

●
●●
●●
●

●

●
●

●
●

●
●●

●

●

●

●

●●
●

●

●
●
●
●

●

●

●

●

●

●
●●●●
●●

●

●
●
●

●
●

●

●

●

●●

●●

●

●
●

●

●

●●

●●●

●

●

●●●

●●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●●

●
●

●

●

●●
●

●

●●

●

●
●●●

●

●

●

●
●

●
●

●
●
●
●

●

●●●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●●
●●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●

●

●
●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●
●●
●
●
●●
●

●
●

●

●●
●
●●
●
●
●●

●●
●
●
●
●

●

●

●●

●
●●
●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●
●
●
●

●●

●
●

●

●●

●

●
●
●
●

●
●

●●

●

●

●●●●
●●

●

●
●●

●
●

●

●
●
●
●
●
●

●

●

●
●●

●●●

●
●

●

●

●●
●

●

●●●

●●

●

●

●

●●

●●

●
●
●●

●●

●

●

●●
●

●

●

●

●●●

●●

●
●

●●

●

●

●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●●
●●
●●●

●

●●

●

●

●
●●

●
●

●

●●

●
●

●

●●●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●
●
●
●
●

●

●

●●●
●●

●
●
●

●●

●

●●

●
●

●

●

●
●●

●
●
●

●

●

●●

●
●

●

●
●
●
●
●
●
●

●

●●
●
●●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●●●
●

●●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●●

●●

●

●
●
●

●
●
●

●

●
●
●●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

●
●●●

●●
●

●●●●

●
●

●●

●
●
●

●●●

●

●
●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●●

●
●

●●●
●
●
●

●
●
●
●

●
●

●
●

●●

●
●

●●

●

●
●
●

●

●●
●●●●●●
●
●●
●
●●
●
●

●●
●

●

●●
●●
●

●●

●●●
●●

●

●
●

●

●●
●●
●
●
●

●●

●

●●
●

●

●

●

●

●

●●

●
●
●

●
●
●

●

●
●
●
●
●
●

●

●

●●

●●
●
●
●●●

●●●

●

●

●●
●

●●
●
●
●

●
●

●●●
●
●●

●
●●

●

●
●●

●

●

●

●

●●
●
●●
●●

●

●●

●

●

●

●●

●
●

●

●
●

●●

●

●
●●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●
●
●●

●

●

●●

●

●●●

●
●

●
●

●●

●

●

●
●
●
●
●

●

●●●

●
●

●
●

●

●
●●

●

●

●

●●
●
●●
●

●●

●

●
●

●

●

●●

●

●
●
●

●

●●

●
●●●●

●●

●
●
●
●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●

●●

●●
●

●

●

●●
●

●
●
●
●
●
●

●

●●
●●
●

●

●

●●

●●
●

●●●

●
●
●
●

●
●●●

●

●

●

●

●

●●

●

●
●
●●

●
●

●
●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●

●
●
●

●

●
●
●
●
●

●
●●

●●

●

●●

●
●

●

●
●

●●●
●

●

●●
●
●

●

●

●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●●●●

●●

●
●

●

●
●

●

●

●●

●

●●

●

●
●
●
●
●

●
●
●

●

●●

●●
●

●

●●

●●

●
●●●

●

●
●
●

●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●●●

●

●●
●●
●●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●
●

●

●
●●

●

●

●
●
●●●●●●●●●●●
●●●
●
●
●●

●●

●●

●

●
●
●
●●
●●
●
●
●
●
●

●
●

●
●

●

●
●
●
●
●●
●

●
●
●●●●
●
●●●

●●
●●
●

●

●
●
●

●
●
●

●

●
●●
●

●
●●
●

●

●

●
●
●
●

●

●
●●

●
●●●●
●

●

●

●

●●
●

●

●
●●●

●

●

●●
●

●●

●

●●●●

●
●●

●

●

●

●

●●
●

●

●

●
●
●
●
●

●

●

●
●

●
●●

●

●

●
●

●

●
●
●
●
●●●

●

●
●
●
●

●●●

●
●
●
●

●●●●
●

●
●
●

●

●
●●●

●

●

●
●

●

●
●
●
●●

●

●

●
●
●●
●●

●

●
●●

●●

●
●

●
●

●

●

●

●●

●●

●
●
●

●

●●
●
●
●
●
●
●
●●

●

●●

●●●

●●
●

●
●

●●●●

●●
●●●
●

●
●

●●

●
●
●●
●
●

●●

●

●

●

●

●●
●
●
●
●●●●●

●

●
●
●
●

●●●

●

●

●

●

●●●

●

●●
●
●●
●
●
●
●
●

●●●
●
●

●●●

●

●●

●
●

●

●
●

●

●●●
●

●●
●

●

●

●

●●

●

●●●
●●

●

●

●
●
●

●●●●●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●
●●
●
●

●
●

●●
●●●
●
●
●●
●

●

●
●
●●
●
●
●

●

●

●

●

●

●
●●●●●
●
●

●

●●●●
●

●●●●

●

●

●
●
●

●

●
●●●
●●●●
●●
●

●●●●●●
●

●

●

●
●●
●●

●●

●
●

●●●

●●

●●●

●
●●●●
●●
●

●
●

●
●

●
●
●
●
●●●●●
●●
●
●●●
●●●
●
●●●
●●
●
●●●

●

●●●●

●
●

●
●

●

●
●●●●
●●
●
●
●

●

●●●
●●
●
●

●

●●
●
●
●●●●
●

●
●
●●
●
●●
●

●
●
●

●

●
●●

●

●●

●

●

●

●

●
●
●

●

●●

●

●●●●●●
●●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●●
●●
●

●

●

●
●●●

●

●
●
●
●
●●

●

●●

●
●

●

●

●●●
●●●
●

●

●

●●●
●●●●
●●
●●●
●

●●
●
●●

●
●
●

●
●
●

●

●
●●
●
●●●●

●

●●

●

●●
●●

●

●
●
●●●
●
●

●

●

●

●

●
●●●●

●
●

●

●

●
●
●
●●●

●

●
●
●

●●●●
●●

●

●●

●
●
●

●
●

●
●

●

●●
●
●
●
●
●●

●

●

●

●
●●
●

●●
●●
●
●●

●

●

●
●●
●
●●●
●

●

●

●

●
●●●

●●

●
●●

●

●

●

●●
●
●

●●

●

●

●

●

●
●●
●●
●

●

●
●
●
●●
●●

●

●

●
●
●

●●●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●
●●●

●
●●●

●
●

●

●

●●
●
●

●

●●
●
●
●●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●●
●
●
●●●
●

●

●

●●

●●
●

●●
●

●

●

●
●

●

●
●●

●

●
●
●
●
●

●

●●

●●●

●

●●
●
●●●●

●
●●●
●

●

●●
●
●
●
●●
●●
●
●
●

●
●
●
●
●
●●●

●

●
●
●●
●

●

●●

●

●●●●

●
●

●
●

●

●

●
●●●
●

●

●
●

●●
●●

●
●
●
●●

●●

●
●

●

●
●
●
●
●●

●

●●
●
●
●●

●

●
●●
●●●

●

●

●

●

●

●●

●

●●
●●●
●

●
●
●

●

●

●

●

●

●●
●
●
●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●

●
●
●●

●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●

●
●

●●
●
●
●

●

●

●

●●

●

●
●
●
●
●

●

●

●

●●●
●

●●

●●
●

●●
●
●
●

●
●●●
●
●
●
●●●●

●
●

●

●

●

●●●●

●
●
●●

●

●

●

●

●
●
●●
●
●
●●
●●

●

●

●

●●

●
●

●

●
●

●●
●

●

●
●
●●

●
●
●
●

●●●
●●

●
●
●

●

●●●
●●
●
●

●●
●●●●
●

●

●

●

●
●●●
●
●
●●●
●
●
●
●
●
●
●

●
●

●

●

●

●●
●
●●
●
●

●

●

●

●
●
●●
●
●●●

●

●●
●●●

●

●

●●

●

●
●

●

●●

●

●

●
●

●
●
●
●

●

●
●
●

●
●●●
●
●
●

●

●
●
●●
●●●●●

●

●
●
●

●

●

●●
●
●

●

●
●

●

●
●
●

●

●

●●●●
●●

●

●●

●
●

●●
●

●
●●
●
●
●
●●●●●●●
●
●
●●

●
●

●
●
●
●
●

●
●
●●

●●
●
●
●
●●

●

●●

●
●
●
●●
●●●●●●●
●●●
●
●●
●●●●
●
●●●●●●●●
●●
●
●●
●●
●
●●●

●
●●
●
●●●●
●●●
●

●●●●●●
●●
●●

●
●●●
●

●●
●
●●●●●●●●●

●
●

●
●
●●
●●

●

●

●

●

●

●

●
●
●

●●●
●

●

●
●●●
●
●●
●

●●●

●

●
●
●
●

●●●

●
●
●

●

●
●

●●

●

●

●
●

●●●

●●
●
●

●
●●●
●
●
●
●●

●

●
●●
●
●
●●●●

●

●

●●
●

●
●
●
●
●
●
●

●
●
●
●

●

●●

●●
●
●

●
●●

●
●●

●

●●●●
●
●

●
●
●
●

●

●●●
●
●
●
●●
●
●●
●

●
●●●
●
●●
●
●

●

●
●

●

●

●●

●
●
●
●

●●●●

●●

●

●

●

●●
●
●
●
●
●
●

●
●●●
●
●
●●●●●●
●
●
●
●

●
●●
●
●

●
●●●●
●

●
●

●

●●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●

●
●●
●●
●

●
●●

●

●
●●

●

●
●●
●

●
●

●●

●●
●
●
●
●●

●●
●
●●
●●●

●

●●
●

●

●
●

●
●

●

●

●

●
●●●
●
●●●
●
●
●

●
●

●●
●●

●●
●

●
●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●
●
●

●

●
●

●
●●●

●

●

●●

●●

●

●
●●●
●●
●●
●

●
●●●

●

●
●●
●
●
●

●
●

●●
●

●●
●●

●

●
●

●
●

●
●
●●
●●

●

●

●

●
●
●
●

●

●
●

●
●
●

●●

●

●

●
●●●
●
●

●●●
●
●

●

●

●●●

●
●
●●●●●
●
●
●
●

●
●●●●
●
●
●

●

●
●

●●

●●

●

●●
●
●
●●

●
●

●
●●

●

●●
●

●
●

●
●●
●
●
●

●
●
●
●
●
●●●
●●●

●●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●●

●●●
●
●●

●
●

●●
●

●

●
●
●
●●

●
●
●

●

●
●
●●●●●
●
●●

●
●

●

●●

●

●
●
●
●

●

●

●●

●

●
●●●

●
●

●●●
●

●
●
●●
●●
●●●
●

●
●●●●
●
●
●
●●
●

●
●

●●
●
●

●
●

●●
●

●
●
●

●

●
●
●
●
●●
●
●

●●
●

●

●
●

●

●
●
●
●
●

●

●●●
●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●
●
●

●
●●
●●●
●
●●

●

●
●

●

●

●
●
●

●
●
●
●●
●
●●●

●

●
●

●
●
●
●

●
●

●

●●
●

●
●
●●●

●

●●

●●
●●
●
●

●●
●
●

●

●

●

●

●

●
●

●
●
●●

●
●
●
●

●
●
●

●●
●●

●
●

●●
●
●●

●●

●
●
●●●●
●
●
●●
●

●●

●
●
●

●

●

●

●●
●

●
●
●

●
●

●
●

●

●
●

●

●

●
●
●●

●

●●●

●

●
●

●

●
●●

●

●●

●

●
●

●
●
●
●
●●
●
●
●●

●

●
●
●●
●
●
●
●
●●
●

●
●
●
●

●

●

●

●
●

●

●

●

●
●
●●
●
●●
●

●

●

●

●
●●

●

●

●
●
●
●
●
●

●

●
●
●●

●

●●●●
●
●

●
●●

●

●

●

●

●

●

●●

●

●
●
●●●
●●

●●●
●
●
●

●●
●

●

●●
●●
●
●●
●
●

●
●

●
●

●

●

●●●●

●

●●

●

●●
●●
●
●●
●

●●
●●
●
●●

●●

●●
●

●

●
●
●
●

●

●
●●●
●
●●●
●

●●
●
●
●

●
●
●
●
●

●

●●●
●
●
●●
●
●

●
●
●●
●
●
●
●

●

●●
●
●
●●●

●

●
●
●

●
●

●●

●

●

●

●
●
●

●

●
●

●
●●●

●

●

●●
●●
●●
●

●
●

●

●

●

●

●●●●
●

●

●

●
●

●
●

●●
●
●●

●
●●●
●
●

●●
●

●

●
●

●●●●●●

●

●●●

●
●
●
●●
●●●

●

●
●
●
●
●
●

●

●●
●

●
●
●

●●

●
●●
●

●●
●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●
●●
●●●

●

●

●
●●
●●
●
●

●
●●
●
●

●
●
●

●

●●

●
●

●

●●
●

●
●
●

●

●

●

●
●
●●

●

●

●

●●

●

●

●
●
●
●

●

●●

●

●

●
●●●
●
●
●

●●

●

●

●●●●
●

●
●●
●
●
●
●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●●
●
●
●
●
●

●

●●
●●

●

●

●●
●
●
●●●

●

●
●

●●●
●
●
●
●
●
●

●
●●
●
●
●●

●
●
●
●●
●●●

●
●●
●

●

●●
●
●

●
●
●
●
●●

●

●●

●●

●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●
●

●●

●●
●●

●

●
●●●
●
●●
●●
●●

●●●
●

●●

●●

●●
●

●

●

●

●
●
●
●
●
●
●
●

●

●
●

●

●

●●●

●

●
●
●

●●

●

●
●
●
●●
●
●●
●●

●
●
●

●
●●
●
●

●

●
●●
●

●●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●

●●
●
●
●

●

●
●

●●●
●
●
●
●

●
●
●●

●
●●
●●

●

●●●
●

●
●

●

●●●
●
●●
●
●●

●
●
●

●
●
●
●
●●

●
●
●
●
●

●

●●
●

●
●
●

●

●
●

●
●●

●●
●

●●●

●
●●●
●●

●

●

●●
●
●●

●

●
●●
●●
●●

●
●

●●

●

●
●

●
●
●
●
●●●

●
●●
●
●
●

●
●
●●

●

●●●
●

●

●

●

●
●
●

●
●●●

●

●
●●
●

●
●
●
●
●

●
●
●
●
●

●●

●●
●

●
●
●●

●

●●●

●●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●
●

●●

●●
●
●
●
●

●
●
●●

●
●

●

●●●
●
●●●

●●

●
●

●
●

●

●
●●

●●

●

●●

●

●

●●●

●
●
●●

●

●

●●

●

●

●
●

●●
●
●
●

●
●

●

●

●

●

●

●●
●
●

●●

●●
●
●●
●

●

●
●

●

●
●
●
●●

●
●

●●

●

●
●
●

●

●

●●

●
●●
●
●
●
●
●

●●

●●

●●
●

●
●
●

●
●
●

●●

●
●●

●

●
●●
●
●

●

●

●

●

●●
●

●

●●●●
●
●●
●

●
●
●

●
●

●●
●

●●

●
●

●●●

●●
●

●

●
●

●●●●

●

●

●
●
●
●
●
●●
●
●
●
●●●
●
●●
●●●
●
●●
●

●

●

●

●
●

●●
●
●
●●●
●
●

●
●
●
●
●●
●
●●
●

●

●
●

●●
●
●
●●
●

●

●●
●
●
●
●
●
●
●

●

●

●
●
●●

●

●
●
●●
●
●
●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●
●
●

●●

●
●
●

●

●
●
●
●●

●

●●

●
●

●●

●●●●●
●
●
●
●
●
●●
●
●
●
●

●

●

●

●
●●
●●
●

●

●
●
●
●
●●
●●

●

●

●

●●●
●

●●

●
●
●
●

●

●
●

●

●
●●
●
●●●●
●●

●

●●●●
●
●

●

●

●
●●

●●

●

●
●
●
●
●
●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●

●●

●
●
●
●

●
●

●

●

●
●

●

●

●●

●

●
●●

●
●●●

●
●
●●

●

●●●
●

●●

●

●●●
●
●

●

●

●
●

●
●

●

●●

●●●●

●
●
●

●

●

●
●

●●

●

●●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●
●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●●
●
●●

●

●●●
●
●

●
●
●

●

●

●

●

●
●
●

●

●●

●

●
●
●●

●●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●●●●

●
●●

●●

●
●

●

●

●

●●●

●

●●

●
●
●
●●

●●●●
●
●

●

●

●
●

●

●

●
●●

●●

●●
●

●●

●

●
●
●
●

●●
●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●
●
●
●
●
●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●●

●

●●
●●

●

●●●●●

●
●
●
●

●

●

●

●

●●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●
●●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●●●
●

●●●

●

●●
●

●
●

●

●●

●

●

●

●●
●
●
●●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●●
●
●●●●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●●●●
●

●●●
●
●

●

●

●
●

●●

●

●

●●

●

●
●

●
●
●

●

●●

●●

●

●
●

●

●●●

●
●

●
●

●

●
●

●

●

●

●●

●
●
●
●
●
●

●

●●
●
●●

●
●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●
●●
●
●

●
●

●

●●

●

●

●

●
●

●●
●

●

●
●●

●●

●
●
●

●●

●
●●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●●●●●
●

●

●
●
●●
●
●●

●

●

●●

●

●●
●
●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●
●
●
●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●
●●
●

●

●

●●
●●

●
●●

●

●

●
●●
●
●●●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●
●
●
●

●●●●
●●●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●
●●
●

●

●

●
●●●●●●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●●●●

●●

●

●

●

●●

●●
●●

●
●
●

●
●

●●

●

●●

●

●●
●

●

●●
●
●●

●

●

●
●

●
●●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●
●●
●

●
●

●●
●
●

●●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●●

●
●

●●●●●●●

●●●

●

●

●●●
●●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●●●

●

●

●

●●

●
●

●

●●

●

●●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●●●

●●

●
●

●●

●

●

●

●

●●
●
●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●●●●
●●

●

●●

●

●

●●

●

●
●

●
●

●●

●●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●●

●

●

●

●
●●
●●

●
●

●

●

●
●
●

●

●●

●

●
●

●●●

●

●●

●

●●●

●

●●●

●

●●●
●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●●

●●

●

●

●
●
●●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●●

●
●●
●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●●

●

●●●

●●●
●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●
●
●
●
●

●

●●

●

●
●
●
●

●

●

●

●●

●●●
●

●

●●●
●
●
●●
●
●

●●●

●

●●
●
●

●

●●●
●●

●

●
●

●

●●

●
●

●
●

●●●●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●●

●●●

●
●
●

●●

●●●

●

●●
●
●
●

●●
●
●●●●
●
●

●

●
●

●

●

●●●
●●

●

●

●

●
●●●●
●

●●●●●●

●
●
●
●

●●●
●●●●

●
●

●●●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●●

●●●

●
●●
●

●

●●●

●

●●

●●
●
●

●

●

●
●
●●●●●●

●
●
●

●

●●

●●

●

●●

●
●

●

●

●

●

●
●
●●
●
●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●●

●●
●

●●

●
●

●
●
●●●

●

●●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●●

●

●
●
●

●

●

●

●●

●●

●●●

●
●●●

●

●●●

●●

●●

●●

●
●●
●
●

●

●●

●

●
●●
●
●

●
●
●

●

●

●●●

●
●

●

●

●

●
●●

●

●

●●
●

●

●

●●
●

●●

●●●

●
●●

●

●

●

●●●

●●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●
●

●

●
●●
●

●●

●

●
●●

●

●●

●

●

●
●

●
●
●
●
●●
●
●

●●

●

●

●
●
●

●
●

●

●

●
●

●
●
●
●
●
●

●

●
●

●
●●

●
●
●
●

●

●

●●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●
●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●
●

●
●●

●

●●
●●

●

●

●

●
●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●
●
●
●

●

●●

●
●●●
●
●●

●
●
●
●

●

●
●

●

●

●●●
●●●
●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●●

●
●●
●

●
●

●

●●
●

●

●●

●
●

●

●

●●

●

●
●●

●
●

●

●

●●●●

●

●

●●
●
●
●

●

●
●

●●

●

●

●
●

●●

●

●

●
●●
●
●
●
●

●●

●
●
●
●
●

●

●

●

●●

●

●

●
●
●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●
●

●●●

●

●

●
●
●

●
●
●
●
●●●

●

●
●

●
●●●
●

●

●
●

●
●

●

●●
●

●
●●●●

●●

●
●
●●

●
●●

●

●
●

●

●
●●

●

●

●●●●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●
●
●
●
●
●
●
●

●

●
●

●
●

●●●

●
●

●

●

●●

●

●●

●

●●●
●

●

●●●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●
●●

●
●

●●

●●●

●

●

●
●●
●

●

●

●
●
●
●
●●

●

●
●

●●

●
●●
●

●●
●

●

●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●●
●
●

●

●

●
●
●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
●
●●
●

●

●
●

●●
●

●

●

●

●

●
●
●
●

●●

●

●

●
●
●
●

●

●

●
●●●

●

●●●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●
●
●

●
●●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●●●
●
●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●
●

●●

●

●●●
●

●
●

●

●●
●
●

●

●
●

●
●

●●●

●●

●

●●

●●

●

●●●

●
●

●
●

●

●
●

●

●

●●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●●●●

●

●

●●

●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●
●

●

●
●
●

●

●

●
●
●●

●

●●
●
●
●
●
●
●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●●

●

●
●

●●
●

●

●
●
●
●

●
●●●
●●

●
●
●
●
●
●
●
●
●
●
●
●●●●

●

●

●
●

●

●

●

●
●
●

●●

●●

●
●●

●

●●

●●

●
●●●
●
●

●

●

●●●
●

●●●

●
●
●
●

●
●
●

●
●
●

●

●

●
●

●●

●
●
●●●
●

●
●
●
●
●●
●

●●
●

●●

●
●

●

●

●
●
●●●

●

●●

●
●

●
●

●

●●●
●
●

●●
●

●

●
●
●

●

●
●

●

●●●

●

●

●

●

●
●

●●●
●

●●

●●

●

●●
●

●

●
●●

●
●

●

●●
●
●
●

●●
●
●
●

●

●

●

●●

●

●
●
●●

●

●●
●●●●
●

●

●

●

●

●

●●

●
●
●
●
●

●

●●
●
●●
●
●
●
●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●●
●
●

●

●●

●

●●

●

●
●

●
●

●●

●
●

●
●
●
●
●

●

●●

●

●●

●

●
●
●
●

●

●●

●

●

●

●

●●

●

●●
●

●●

●
●

●

●●
●●

●
●●

●

●
●

●

●●●

●

●

●
●●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●
●
●●●

●

●

●

●
●●
●

●
●
●
●●

●

●

●

●●●

●●●

●●

●●

●

●●

●
●

●●
●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●
●●

●
●
●

●

●

●

●
●

●

●
●
●

●

●
●●

●

●●
●●
●

●●●
●
●

●
●●
●

●●●

●

●
●●
●
●

●

●●

●●●
●

●
●

●●

●
●

●

●
●
●●
●

●
●
●

●

●●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●●●

●●

●

●
●
●
●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●●
●
●

●

●●●

●

●

●●
●
●
●
●●
●

●

●
●

●

●

●
●

●

●
●

●●
●
●
●

●

●

●
●
●
●

●

●
●

●
●
●●

●
●

●●●●●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●●
●
●

●

●

●
●

●
●●
●

●
●

●
●

●●
●●
●
●
●

●

●●●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●●

●
●

●
●●
●

●
●

●

●
●●

●

●

●

●●

●●●●●●●●●●●
●
●

●
●

●

●
●●●●●

●

●
●
●
●
●●●●
●
●

●

●

●

●

●
●●
●●●

●

●

●

●
●

●●
●●
●
●●
●●●●●

●

●
●●
●●●●
●●
●

●
●

●

●
●●●
●
●

●

●●●
●

●
●
●●

●

●
●
●●
●

●●
●●

●
●●
●●●●●
●
●●●

●

●

●

●●●●●●●
●

●
●●●●

●●●

●●
●

●
●

●
●
●

●

●
●●

●

●

●

●

●

●●●●
●
●
●
●
●

●●

●

●●●

●
●
●

●

●

●

●
●●
●
●●●●
●

●

●

●

●●●
●

●
●

●●●

●●
●●
●

●
●

●●

●
●
●
●

●

●

●

●

●
●
●
●

●

●●
●
●
●●●●
●●
●
●

●

●

●
●

●●●

●

●●●

●●

●●●
●●
●

●●

●

●●

●

●

●

●
●●

●

●●
●

●

●●

●

●●

●●

●●
●●●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●●
●●

●

●●

●

●
●
●●
●

●

●
●
●
●●●

●

●●●
●

●

●
●●●

●

●
●●●
●●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●
●
●
●
●
●

●

●

●

●

●

●
●

●●

●

●●●●

●

●●●●●●●●

●

●

●●

●

●

●
●
●

●
●
●
●
●
●
●●●
●
●●

●●●

●●

●●●●

●
●
●
●
●

●●

●●

●
●

●

●
●●●

●

●●●
●●
●●
●
●●

●

●
●

●
●
●

●

●
●
●●
●

●

●
●

●
●

●

●●

●
●

●●●

●

●●
●●
●●●
●

●

●

●
●
●

●
●

●

●
●
●●●●
●
●●●

●

●
●

●

●
●
●●●●
●

●●
●
●●
●
●●
●
●●●
●
●
●●
●
●

●

●

●

●

●
●

●

●

●●
●
●
●●●
●

●
●
●

●

●●

●
●
●

●

●
●
●●
●●

●●

●

●
●●●●

●

●●●

●

●●

●

●
●
●
●●●●
●
●
●

●

●

●

●

●

●●

●●

●

●

●
●●
●
●
●●
●●●●●
●

●

●●

●

●

●

●●

●

●

●

●
●●

●
●
●
●●●

●

●
●
●

●●

●

●
●●
●
●●●

●

●
●

●

●●
●
●
●
●

●

●

●

●
●

●
●

●
●
●●●

●

●

●

●

●

●

●●
●
●

●

●
●
●
●●●

●

●
●

●

●

●

●●
●
●

●●●●●

●
●
●
●
●

●

●●
●

●

●

●

●

●

●
●
●
●

●●

●

●
●

●

●
●

●

●●
●
●
●
●
●
●●
●

●
●

●
●●●
●

●
●●●●
●●
●●

●●
●
●

●●

●

●

●
●

●●

●

●

●●

●
●
●
●

●

●

●

●●

●●
●
●

●
●

●

●

●

●●●

●●
●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●●

●
●

●

●●●●

●

●
●

●

●

●
●

●

●●●●
●

●

●

●●

●

●
●

●

●

●
●
●

●

●●

●

●

●●
●●

●

●

●

●

●
●●

●
●

●●

●

●●

●

●
●
●
●
●
●
●

●

●

●●●
●●●

●

●●
●
●●●
●●
●
●●

●

●
●●

●
●

●
●●
●
●●

●

●●
●●

●

●
●

●●
●
●

●
●
●●

●
●
●

●●

●
●
●

●

●
●

●●
●
●

●
●

●

●●

●

●
●

●

●
●
●●
●●
●
●

●

●
●
●
●●

●

●●●●

●

●

●
●
●●●●●

●

●●
●
●
●
●

●

●

●

●●
●
●

●

●●
●

●
●

●

●●
●●

●

●

●●●
●

●

●

●●●●●
●

●

●●●●
●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●●

●●
●

●

●

●●●●●●

●

●●
●●

●

●

●

●
●●
●
●
●
●

●

●

●●●
●
●

●●●●

●

●

●●●

●●●

●

●
●

●
●●●
●
●
●

●
●●
●●

●
●

●

●●

●●
●

●
●

●

●●

●

●
●
●

●●
●●

●
●
●

●
●●●
●●
●
●

●●
●●●●
●

●

●

●

●●

●
●●●
●●●●
●●●

●
●
●
●

●

●
●

●

●

●

●●
●
●
●●
●

●

●

●
●

●●●

●

●●

●

●

●

●
●●
●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●
●
●●●

●
●●
●

●

●
●
●

●

●●●●
●

●

●
●
●

●●

●

●
●

●
●

●
●
●

●

●

●
●
●

●

●

●●●●

●

●

●

●
●

●

●

●●●●●●●
●
●
●●
●●

●
●●
●

●
●●●

●

●
●●●●
●●
●
●
●

●
●
●
●●
●
●●●●
●
●●●
●●●●●

●

●●●●●

●

●

●●●●●

●
●●●●
●
●●●
●

●

●
●●
●
●●
●●●
●
●
●

●
●●
●
●●●
●
●

●

●●●●●
●

●

●
●
●●●

●●
●●
●
●●●
●

●
●
●
●
●

●
●
●
●●●
●
●●●
●
●●●

●

●

●

●●

●●

●

●●●
●

●

●

●
●
●
●●
●
●

●●

●

●●

●●●

●

●

●
●
●
●
●
●
●

●

●●

●

●

●
●

●
●
●

●

●

●
●●

●●

●

●●●
●
●
●

●
●●

●

●
●

●

●

●

●●●●●

●

●

●●
●

●

●
●
●
●

●
●

●
●
●●
●
●
●
●
●

●

●
●●

●

●

●

●
●
●●

●●

●●
●

●

●●●
●
●
●
●●
●
●●
●
●●
●●●

●
●●

●
●●
●
●

●●

●
●
●●
●
●●●●
●

●●

●

●

●

●●
●
●●
●
●●●
●
●
●

●●●●●●●●
●
●●

●

●

●
●
●
●
●

●●

●●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●

●
●●

●●
●●
●

●

●
●
●

●

●
●●
●
●●
●

●

●

●●

●

●
●●●
●
●●
●●

●

●
●●

●●

●●

●

●
●

●●●

●

●
●●
●●

●

●●●
●

●

●
●
●
●

●

●●
●
●

●●
●●●

●●
●●
●●

●

●

●
●●
●

●
●
●●
●
●

●
●
●
●

●

●●
●●●

●

●

●
●

●

●

●
●

●●
●
●

●●
●●
●

●

●●

●

●

●

●
●●
●●

●
●
●
●●

●

●●
●
●

●

●

●

●

●
●
●
●●

●

●

●

●●
●

●
●

●
●
●
●

●

●

●

●

●

●
●
●
●
●
●
●●

●●●

●●

●

●
●●●
●●
●
●
●●●●

●

●

●
●
●

●
●●
●●●

●

●

●

●
●
●

●

●
●
●

●

●●●
●●●●
●

●●●

●

●

●

●
●
●
●
●●●

●
●●
●

●●
●

●

●
●
●

●
●

●

●●
●
●
●

●●

●
●
●

●

●
●●
●
●

●
●
●
●

●

●

●
●

●
●
●
●
●
●
●●
●

●

●●

●

●

●●
●●
●
●
●

●

●
●●●
●

●
●
●●

●

●
●
●
●●●●●●●
●
●●

●
●

●

●●

●

●
●
●
●
●
●

●

●

●

●

●
●●
●
●

●●●●●
●
●●●●
●

●
●
●
●
●

●
●
●
●●
●●

●
●

●
●●

●
●

●

●
●

●●
●

●

●

●●
●
●●
●●
●
●

●●
●

●

●
●

●

●
●●

●
●

●

●
●
●

●

●

●

●
●

●
●
●

●
●●

●

●●●●
●
●
●

●
●●

●
●
●
●●

●

●●
●

●
●
●
●
●●
●
●

●

●
●

●

●
●
●

●
●●

●

●●
●

●
●
●
●

●

●

●●

●●
●
●●
●

●
●●
●

●

●●

●

●

●●

●
●
●
●
●
●
●
●

●
●
●
●

●

●
●●
●

●●●
●
●

●

●●

●

●●
●
●
●●●
●●

●
●
●●

●

●

●●
●
●
●
●
●
●
●

●

●

●

●

●●
●●●
●

●●●
●●●
●
●●

●

●●
●
●

●

●●●
●
●

●

●
●
●●

●

●
●
●●
●
●
●
●
●
●
●●
●

●

●
●●
●

●

●

●●
●

●

●●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●
●
●

●
●
●
●
●
●

●

●●
●●

●

●●●
●
●●

●
●
●

●

●

●

●

●
●

●
●
●
●●
●

●●

●
●
●
●
●
●
●

●●
●
●

●

●
●●

●●
●●
●●
●●
●
●

●●
●

●

●

●

●

●
●

●

●●●
●●
●
●
●●●
●●
●

●

●
●●

●
●
●

●

●
●

●

●
●
●●
●

●●
●
●
●

●
●
●
●
●

●

●
●
●●
●
●
●●
●

●
●

●
●
●

●●
●
●
●
●

●

●●
●
●
●
●
●

●

●
●
●

●
●

●●

●

●

●●

●
●●●

●
●

●

●
●●
●●
●

●
●
●
●

●

●

●●●
●
●

●

●

●

●

●
●●

●●
●
●

●
●

●
●●

●
●
●

●

●
●

●

●

●●●●●
●
●

●

●
●
●

●

●
●

●

●
●●

●

●
●
●
●●
●
●●
●
●●

●

●
●
●
●
●●
●
●

●
●●
●
●●

●

●
●

●

●
●●
●
●

●

●
●

●
●●

●

●
●●

●

●

●●
●
●●
●●
●
●●
●
●

●
●
●

●●

●
●

●

●

●
●
●●

●

●
●
●
●

●

●

●
●●
●

●

●
●
●

●

●
●
●
●

●

●●

●

●
●●●
●

●●

●

●

●
●
●
●
●
●
●
●
●●
●
●

●

●

●

●

●●●

●
●●

●
●

●●●

●
●●
●
●

●

●

●●
●

●

●

●●

●
●●●

●

●
●

●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●
●
●●
●

●

●
●

●
●

●

●

●

●●
●
●

●
●
●
●
●
●
●●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●
●
●●

●●
●●●
●
●●
●●
●●
●●
●
●

●

●●●
●●

●●

●●
●

●

●

●●
●
●
●

●
●
●

●
●
●●●

●
●●
●

●●
●

●

●●●
●
●

●●●

●
●
●

●
●
●
●
●
●

●

●
●
●
●
●
●

●

●

●

●

●

●
●
●

●

●
●
●

●

●●

●●
●
●
●

●
●

●

●

●
●
●
●
●

●
●
●

●
●

●
●

●
●
●
●●
●●

●●
●
●
●●
●

●
●

●

●●●
●●
●

●

●
●
●
●

●
●
●●
●
●

●●

●
●
●

●

●
●
●

●●
●

●

●

●
●
●
●

●●
●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●
●

●●

●
●●●
●
●

●

●
●●
●

●●

●
●

●●
●

●
●
●
●
●
●
●

●
●●
●
●
●

●

●

●
●

●●●
●
●
●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●●
●

●
●
●
●
●

●
●●
●

●●●
●
●
●

●●
●●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●
●
●
●

●
●
●●

●
●●

●

●
●●

●
●

●

●●●
●
●
●●
●
●
●●
●

●
●
●●

●

●●

●

●●●●

●

●

●
●
●●

●●●

●●
●
●
●

●
●

●

●●
●
●
●
●

●

●●
●
●●
●
●
●

●

●
●
●

●

●●

●

●

●
●●

●

●

●
●
●

●●

●

●

●
●
●

●
●●
●
●
●

●

●●

●

●
●●●
●

●
●
●

●●

●●

●
●●

●●

●
●●
●
●
●
●
●
●
●

●

●●●
●

●
●
●
●

●●

●

●
●

●

●
●

●

●

●

●
●
●●
●

●

●
●

●

●

●

●
●
●
●

●

●
●
●

●
●

●

●
●
●
●
●●●
●
●
●
●
●●●
●
●●
●

●

●●
●
●

●

●
●●●
●

●●●
●

●●●
●
●●
●
●●
●

●

●

●●

●
●●
●

●●
●

●

●
●
●
●
●
●
●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●●●
●

●

●
●●

●

●
●

●●●●

●
●●
●
●

●

●
●●
●
●

●

●

●
●
●
●
●●●●
●●
●

●
●
●
●

●●
●
●●

●

●
●
●

●●

●
●
●

●●●
●
●

●

●
●

●

●
●●
●
●

●

●

●

●●●

●●

●
●
●●

●

●
●

●

●
●●
●
●●●●
●
●●
●●
●
●

●
●

●

●●

●

●
●
●●
●
●

●

●

●
●

●

●
●
●

●
●

●
●

●

●●●●●●●
●●●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●
●●●●●●●●●●●●
●●●
●
●●●●●●●●●
●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●
●●●
●
●●
●●
●
●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●
●●●●
●●●●
●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●●
●●●●●●●●●●●
●
●●●●
●
●●●●●●●
●●●●●
●●●●●
●●●●
●●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●
●
●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●
●●
●
●●●●●●●●●●●●●
●●
●●
●●
●
●●●●●●
●
●●
●
●●●●
●
●●●●●●●●●
●●●●●
●●
●
●
●●
●
●●●●
●
●
●
●●
●●
●●
●●●●●●●●
●●●
●●●●●●
●●●●●
●
●●●●
●
●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●
●
●●●
●
●●●●●●●●
●●●●●●●
●●●●●●●
●
●
●
●●●
●●●●
●
●
●
●●
●●
●●
●
●●
●
●●●●●●●●
●
●
●●●●
●
●●●
●●
●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●
●●●●
●●●●●
●
●●●●●●●●
●
●●●●
●
●
●
●
●
●●●
●●●●●●●
●●
●
●●●●●●
●●●
●●●●●●
●
●●●●●●●●●●
●●
●●●●●●
●
●
●●●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●
●●●●
●
●
●
●
●
●●●●
●
●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●
●●
●
●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●
●
●●●●●●●●
●●
●
●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●
●
●
●
●●●●●●●
●●●●
●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●
●●●
●
●●
●
●●●●●
●●●●
●
●●●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●
●●●●●●
●
●●●●●
●
●
●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●
●
●●
●
●●●●●
●
●
●●●●●●
●
●
●
●●●●●●●●●●
●●●●●●
●
●●
●●●●●●●●
●●●
●
●
●●●●
●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●●●
●●●
●●●
●
●●●●●●
●●●●
●
●
●●●
●
●●●●●
●
●●
●●●●●●●●●
●●●●●●●●
●
●
●
●●●●●●
●
●●
●
●●●●
●●●
●●
●●
●
●
●●●●●
●●●●
●
●
●
●●●●
●●●●●●
●●●●●
●
●●●●●●
●●●●●
●●
●●
●●●●●
●●●
●●
●
●●
●●●
●●●●●
●●
●●●●
●●●●
●●●●●●
●●
●●●●●●
●●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●
●●
●
●●
●
●●
●
●●●●●●●
●
●●
●●●●●●
●●
●
●●●●●●●●●
●
●●
●●●●●●●
●
●
●●
●●●
●
●●●
●
●●●
●●●
●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●
●●●●
●●
●
●
●●●
●
●●●
●●
●●●
●●●●
●
●●●●●●●
●●●●
●
●●
●
●●●●●●●
●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●
●
●●●
●
●●●
●
●●●●
●
●●●
●●●●●●●●
●●●●
●●●●●●●
●●●
●●
●
●
●
●●●●●●
●
●●●
●
●
●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●
●●
●●●●
●
●●
●
●●
●●●
●●
●
●●●●
●
●
●
●
●●●
●
●●
●
●●●
●●
●●●●●●●●
●
●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●
●
●
●●●●●
●
●
●●
●●
●●
●●
●
●
●●●●●●●●
●
●●
●●●●
●
●●●●●●●●
●
●●
●●●
●●●
●
●●●
●
●●●
●●●
●●●●●
●
●
●
●●●●●●●●
●●
●●
●●●
●
●
●●
●●●
●
●●●●●●●
●●
●●
●●●●●●●
●●●●
●●●●●
●
●●●●●●●
●
●●●●●
●●●
●●
●●●●●●●
●●
●●●●●●
●●
●●●
●
●●
●
●●
●●●●●●●●●●●●
●
●
●
●
●●●●
●●●●
●●●●●●
●●
●
●●●●●●●
●●
●●●●
●
●●●●●
●●
●●●●●●●●●●
●
●●
●●
●●●
●●

●
●
●●●
●●●●●●●●●
●●
●●●●●●
●●●●●
●●●

●

●●●
●
●
●●
●●●●●●●●●●●●
●●
●●
●●
●●●
●●
●
●●●●●
●●●●●
●
●
●●●●●●●
●
●●●●
●●
●
●●●●●●●●●
●●●●●
●●●●●●●●
●
●●
●●●●●●
●●
●●●●●●
●
●●●●●●●●●●
●●
●●
●
●
●●
●
●●●●●●●
●●●●●●●●●●●
●●
●
●
●●
●
●
●
●●
●●
●
●●●
●●●●
●●●●●●
●●●●●●
●●●●
●

●●●●●
●
●
●
●
●●
●●●●
●●●
●
●●●●●●●●●●
●●●●●
●
●●
●
●●
●●●●
●
●●●
●●●●●●●●●●●
●●●●
●
●
●●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●
●●●●●●●
●
●●
●●●
●●
●
●●●●
●●●●●●●●
●●●
●●
●●●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●
●●●
●
●
●●●●
●●
●
●
●●●●
●
●●●●
●●
●●●
●●●●
●●●●
●●
●●
●●●
●●●●●●
●
●●
●
●
●
●
●
●
●●●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●
●●●●●●
●●●
●
●
●
●
●●●●
●●
●●
●●●●
●●●●
●●
●●●●●●●
●
●
●●
●
●●●
●●
●●●●●●●●●●●
●
●●
●●
●●
●●
●
●●
●●●●●●●●
●●●
●
●●●
●
●●●●●●●●●●
●
●●●●
●●
●●
●●●●●
●
●
●●
●
●
●
●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●

●●●
●

●●

●
●●
●●●●

●

●●
●
●●●●●
●●●
●
●
●●

●●
●●●
●

●●
●
●●
●●
●
●●
●
●●

●
●●●●●
●

●
●

●
●●
●
●
●●●
●
●●
●●
●

●

●
●
●●
●

●●
●
●●●●

●
●●●●●

●●
●
●
●
●
●
●
●●
●
●●●
●●
●
●●

●
●●●
●
●●
●
●●
●
●●●●

●
●●●●
●
●
●

●●
●
●●
●●

●
●
●●
●
●

●●
●●
●●●
●●●
●●
●●
●

●
●
●●

●

●●●●●
●
●●

●
●
●●●●
●●●●●●●●
●●
●
●

●●
●
●
●
●
●●
●
●
●
●●●
●●●●●
●
●●●●

●

●●●●
●
●●
●
●●●●●●●

●

●●●●
●●●●
●
●
●
●
●
●
●●●
●
●
●
●●
●
●●●●●
●
●
●
●●●●
●

●●●●●●
●
●●●
●

●●●●●●●
●
●

●
●●●●●
●●●●●●●●●●●●●●●
●
●

●●●
●●●●●●
●●●●●●●
●
●
●●●
●
●
●●●

●●●●

●

●●●●●●●
●
●
●●●●●●
●
●
●
●●●●●●●●
●

●●●●●●●●●

●●

●
●
●●●●
●
●●
●
●
●●●●
●
●●●●●
●
●
●●
●
●●
●
●●●●
●
●
●
●●●●

●
●●

●
●●●●●

●
●●●●●
●
●
●●●
●
●●
●●●●

●

●●●●●
●●
●

●

●

●●●
●●
●
●

●●
●●
●
●●
●

●●●●
●

●●

●

●●●
●
●●
●●
●
●

●

●●●●

●
●
●

●

●●

●●
●●
●●
●
●
●

●
●

●●
●
●
●

●
●●●●

●●

●
●
●
●
●●●

●

●
●●●

●●

●
●●●●●
●

●●●

●
●

●●●

●
●●
●
●
●●
●●●●
●
●●●

●

●●●●
●
●
●●●
●●●●
●
●

●

●●
●●

●

●

●●●

●●
●●●
●
●●●●

●

●
●●●●
●

●●
●
●
●
●●
●
●●●
●
●
●

●
●●

●●
●●
●●●
●●●●
●
●●●
●●
●
●
●●●
●
●●●
●
●

●

●

●

●●
●
●

●●
●●●●●●●●●
●●●●●●●●●
●

●
●
●
●●
●
●
●●●
●●

●
●●
●●●●●
●

●
●●
●
●●●

●●
●
●

●

●
●
●

●
●
●

●
●
●●●●●
●
●
●
●●●●

●

●
●●●●●●

●

●●

●

●

●●

●
●●
●
●●●●●●

●●

●●
●
●●●●
●
●●●
●
●●●
●

●●●
●

●●
●
●●

●
●●
●●●●●
●
●

●
●

●
●
●

●●●
●●
●●

●

●●●●●●●●
●
●●
●
●
●●

●

●

●

●●

●●●

●●●●●●
●
●●●
●
●

●

●

●
●
●

●

●●

●
●
●

●●●

●
●

●●

●
●●

●●
●●●
●

●●

●

●

●
●
●

●

●●

●

●

●
●●
●

●
●

●
●
●●●●

●

●
●●
●

●●

●

●●
●
●●●

●

●
●
●

●●●●
●
●●●●

●

●●

●
●
●●
●●●●●●●
●
●
●●
●
●
●●
●

●

●
●

●

●●
●
●●●

●●●
●
●
●
●●●
●
●
●●

●

●
●●●●●
●
●
●
●●

●●

●●●●●
●
●
●
●●
●
●●
●●
●
●
●
●●●●●●●
●
●
●●●●

●

●
●●
●
●
●●●●●
●
●
●
●
●●●●
●●

●

●
●
●●
●
●
●
●
●
●

●
●●●●

●●●
●
●●●●●
●●
●
●●●●
●
●●
●
●

●
●

●
●●●
●
●●●●
●
●●●
●●●●

●●

●●●●

●

●●
●●●
●

●

●

●●

●
●●●●

●●
●

●●●●
●
●●
●●●●●●

●
●●●

●

●●●●●●
●●
●●

●●●
●
●

●●
●
●●

●●●

●●●
●●

●
●
●
●
●

●●●●●

●
●●●
●●

●

●●●
●

●●

●
●●
●●●●●

●

●
●

●

●
●
●
●
●
●

●

●
●
●●
●
●●●●●
●

●●●

●●●

●
●
●●

●
●

●

●●●

●●●●

●
●●
●●●
●
●
●
●

●●

●
●
●●

●

●
●●

●
●●
●●
●
●

●●
●●
●●●●●
●
●
●

●
●●●●●

●
●●
●●●

●●●

●
●
●●

●

●
●

●

●●●
●
●
●
●
●

●
●●●●
●
●
●●●●

●

●

●●

●●

●

●●●●●●

●●●

●●●●
●●●
●●●
●

●

●●

●
●

●
●
●●●●
●

●
●●
●
●

●

●
●

●

●

●
●●
●●
●
●
●

●
●
●
●
●●
●●●
●●●

●
●●

●

●
●●●
●
●
●

●

●

●

●

●

●
●●●

●
●
●●●●

●
●
●●
●●●

●

●
●●
●

●●●●
●●
●●●●
●●●●●●
●
●
●

●●●

●

●●●●●●●
●●●●●

●

●●
●
●

●

●●

●
●
●
●
●●
●

●

●●
●

●

●
●

●
●●●●●

●

●
●
●
●●
●●

●

●●●
●
●
●
●

●●
●
●

●
●
●●●

●

●
●
●

●
●
●●

●

●●●

●
●●
●●

●●
●●●●

●

●

●●●

●●
●
●●●●

●●
●●

●

●

●●●●●
●
●●●●

●●
●

●

●
●●●●

●

●●●●
●
●

●
●●
●

●
●
●

●
●

●
●
●●
●●
●
●

●

●
●
●

●
●

●
●

●●
●
●●●
●
●

●●●
●●

●

●
●
●●●
●
●

●
●

●●●
●●
●
●
●

●●●
●●

●●●

●●
●●

●

●●

●
●

●

●

●

●●
●

●

●●

●●

●

●

●

●●
●

●
●●
●●●
●

●

●●●
●●
●●●●

●●●
●●●
●●●●
●
●●
●●●
●●

●
●●
●●●

●
●
●

●
●●●●●●●●

●●

●●●
●●●
●
●●
●
●●

●
●
●

●●●

●

●

●

●

●
●
●●

●

●

●
●
●●

●
●●
●

●
●

●
●
●
●●●
●●
●●●
●

●

●●●●●

●

●●
●
●●
●●
●

●

●

●

●●●
●

●
●●●●

●

●●●
●
●
●

●
●
●

●

●
●
●

●
●
●●

●●

●●
●
●
●
●
●
●
●
●
●●
●
●
●●

●●

●
●
●

●●●●

●

●

●
●
●●●
●
●●●●●●
●●
●

●●●

●

●●

●
●●

●
●
●
●●
●●●●●

●

●●

●

●
●
●

●

●

●●●
●

●

●
●
●●
●●●●●●

●

●

●●

●

●●

●●
●
●●●
●
●●
●●●●●●●
●
●●●

●●
●
●

●●

●●●●

●
●
●

●●●
●
●

●●

●
●●

●●●●●●

●
●
●●●●
●●
●●●●
●
●
●
●

●

●
●
●

●

●●●●●
●
●●●

●

●

●●●
●
●
●●●
●●

●●●

●

●●●●●●●●●
●
●
●●●
●
●
●
●
●●●

●●●
●
●●
●
●

●

●●●●

●

●●
●

●●
●
●●●
●

●
●●

●●●●●●●●
●●●

●
●

●

●●
●
●●
●

●
●●
●●
●●
●
●

●●
●●●●
●●●●

●●●

●

●

●
●●●●●
●
●
●

●

●●●●

●

●
●●
●
●●

●

●●●
●
●

●●●●●●
●

●●
●●
●
●●●
●
●●●●
●
●
●
●

●

●

●
●●

●
●
●●

●
●

●●●●●

●●●●
●

●●
●●●

●

●
●

●

●●

●●
●
●●●●●●

●
●
●●

●

●

●
●●

●
●
●
●●●
●
●●
●

●

●●●●
●
●●●

●

●
●
●
●
●
●●●

●

●●●
●●

●●

●

●●
●
●

●●●
●

●
●
●●●●

●●●
●●●●●●
●
●●●●
●●●
●●
●●

●
●
●

●

●
●●●

●

●●●●●

●
●●●●
●

●
●
●
●●
●

●●

●

●

●

●●

●
●
●

●
●

●●
●

●
●
●

●●
●●
●●
●
●●

●

●
●●●●
●●●
●●

●●
●
●
●
●
●
●

●
●
●
●
●
●●

●●●●

●
●
●●●
●

●

●

●
●●

●●●

●●

●●●●●●●●

●

●

●
●

●
●
●●●
●
●●
●
●●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●
●●

●
●

●●

●●
●
●
●●

●●
●

●●●●
●
●●●

●

●
●●●

●

●●●●

●●●

●
●●

●
●●●●

●●
●

●

●

●●

●

●●

●●
●
●●●

●

●

●●

●●●●

●

●
●
●
●
●●
●●●
●
●
●
●●
●

●●
●
●
●
●●
●●

●

●

●
●●
●
●●●●
●
●●
●
●●●●
●●●●●●
●
●●●●●●
●
●●●
●
●●
●●●●
●
●●
●
●
●●●●
●
●
●
●

●

●

●

●

●●●
●●●●
●
●●●●
●
●●●
●●●●

●

●●

●

●
●●

●
●

●

●●
●
●
●●●●●●●●●
●
●●

●●

●
●●

●

●
●●●●
●●●●

●

●
●●●
●●
●
●

●

●●●
●
●●

●
●

●●●●
●●●●●
●●●
●
●
●
●
●

●
●
●

●
●
●●

●●
●
●
●●●●●
●
●
●●
●
●
●
●
●
●

●

●
●

●
●●●
●
●
●●●
●●●●
●●●
●●
●●
●●
●●
●●●●
●●

●

●
●
●●
●●●●
●
●
●●
●

●
●
●●
●●
●
●
●●●
●●●

●

●●●
●●

●
●
●●
●●
●
●
●
●
●●
●●
●
●
●●
●
●●●●●●●
●●
●●●●●
●●
●

●
●●●
●●●●●●●
●
●●●●●
●
●●
●●●
●●
●●
●
●

●
●●●
●

●
●
●
●●
●
●
●
●
●
●●●
●
●
●
●●●●●●●●●●
●
●
●
●
●●●●●
●
●
●
●●

●
●●●●●
●●●
●●
●●
●
●●●●●
●

●

●

●●●●●
●
●

●
●●●●●
●●●●●
●●
●●
●●●
●

●

●

●●
●

●

●
●●●●●●
●

●●
●

●
●
●●●●●●●
●
●●
●

●
●●
●●
●
●●●
●
●
●●●●
●
●
●●●●●●●●●●
●●
●●
●●●●
●
●●
●●●●●●●
●
●
●
●

●●
●
●●●●
●
●●
●●
●
●●
●●
●●
●●●●●●
●
●●●●●●●
●

●

●
●

●
●●
●
●

●
●●●
●
●
●
●
●●●●
●
●
●
●●●●●●
●
●●●
●
●●
●
●●
●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●

●
●
●●●
●●●●●●
●●●
●●●
●
●●●●●●●●●
●●
●●●●●●●●
●
●●●
●●
●●●●●●●●●
●
●●
●●●●●
●
●●●●●
●
●●
●●●●●
●
●●●●
●●
●●
●●
●
●●
●
●●
●
●●
●
●●
●●●●●
●●●●●
●
●●●
●●●
●
●●●
●●●●●
●●●●●●●●●●●
●●
●●●
●
●
●
●●●●●●●
●●●●●●●●

●
●●●
●
●
●●
●
●●●
●●●●●●●●●
●●
●
●
●●●
●●
●●

●●
●
●●
●●●●
●●
●●●
●
●●
●●
●
●●
●●●
●
●●
●●●
●●

●

●

●●
●●●

●
●
●
●
●
●●
●
●
●●●●
●●
●
●

●
●●●●●
●●
●●
●●
●
●
●
●●●●●●
●

●

●
●●

●●●●●
●
●●●
●

●
●
●

●

●

●
●●●
●
●

●●
●
●
●
●●
●●
●
●
●●
●●
●●●●●●●
●
●
●
●●
●●

●●●
●

●●●●
●●
●●
●
●
●●●●
●●●●
●

●
●

●

●
●●●●

●

●
●

●●
●
●●●
●●●●●●
●
●
●●●●●●●
●●
●●●●
●●
●
●●●
●●
●●●
●●●●●●●●●●●●●
●
●●
●●
●
●
●
●
●●●●●●●●●
●●●●●●
●
●
●●●●
●
●●●
●●●●●●●●
●●
●●●●
●●●●
●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●
●●●●
●●●●●

●●●
●
●●
●●●●
●
●●●●●●●●
●●●●
●
●●●●●●●●●●
●●●
●
●●●
●●
●
●●●●●●●●●●
●
●
●
●●●●●
●●
●●
●
●●●●●●●●
●●●
●
●●
●
●●
●
●
●●●●
●
●●●●●●
●●
●●●●
●●●●●●
●●●
●
●●
●●●
●
●●●●●●●
●
●●●●●
●●●●●●
●●
●●
●●●●●●●●●●
●●●●
●
●●●
●●●●
●●
●
●
●

●●
●
●●
●
●●●●

●
●●●
●
●●●●
●
●
●
●
●
●
●●
●
●●
●
●●●
●
●
●
●●●●●●●●
●●●●●●

●●●●
●●
●●
●
●●
●●
●
●
●●●
●●●●●●●●●●●●●
●
●
●●●
●
●●
●●●●●●●●
●
●
●●●●●●●●
●●●●●●●
●
●
●●
●●
●
●●●●●
●●
●
●
●●
●●●
●
●●
●
●●
●
●●●
●●●
●●
●●
●
●●●
●
●●●
●

●●●
●●●●●●●●●●●
●●●
●
●
●●
●
●●●
●
●●●
●
●
●●●
●
●
●●●●●●●●
●
●●
●●●●●
●
●●
●●
●●●
●●●●
●
●●
●●
●
●
●●●●●
●
●●●●●●
●●
●●●●●
●●
●●
●
●●
●
●
●●
●●●●
●
●●●●
●
●●
●●●●●●
●●●
●
●●●
●●
●●
●
●
●●●●
●
●
●
●●●●●
●
●●●●●●●
●
●
●
●●
●
●●
●●●●●●
●●●●
●

●●
●
●●
●●
●●●
●
●●●
●
●●
●
●●●●●●●
●
●●●
●●
●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●
●
●●●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●●●
●●●●
●
●●
●
●●●●●●●●●●●●●●
●
●●
●
●●
●
●●
●
●●●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●
●
●
●●
●
●●●●●●●
●
●●●●
●●
●●●
●
●●●●
●●●●●●●
●
●
●●●●●●●●●●
●
●●●●●●●
●
●●●
●
●●●●●●●
●●●
●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●
●
●
●●

●
●●●
●

●●●
●

●●●

●
●●●
●●●●●●
●
●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●
●
●
●●●●●●●●
●●●●●
●
●●●●●●●
●●●●●●

●
●
●
●
●●●●●●●●●
●●●
●
●●●●
●
●●●
●●●●
●●●
●●
●
●
●
●●●
●
●
●●
●

●●
●●
●●●
●●●●●●●
●●●●●
●●
●
●●●●●●
●●●●●●●●●●●●
●●●●●
●
●●●●●
●
●●●●●
●
●●●●
●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●
●
●●●
●●
●●●
●
●
●
●●
●
●●●
●●●●●●
●
●●●●●●
●
●●
●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●

●●●
●
●●●●●
●
●●●●
●●●
●

●
●●●
●●
●●●●●●●
●
●
●●●●
●●
●●●
●●
●●●
●
●●●●●●
●
●
●●●
●
●
●

●
●
●●
●●●
●●
●●
●●●●

●

●●●●●
●●●
●
●●●
●●
●
●●
●●●●
●
●●●●●●●●●●●
●
●●
●●
●●
●●
●●●
●
●●●
●
●●
●●
●●●●●●
●
●
●
●●●
●●
●

●●●●●●
●
●●●●●●●●
●
●
●●

●●●

●
●
●
●●

●
●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●
●

●●●
●●●●●●●●●
●●●●●●●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●
●●
●●●●
●●●●●●

●
●●●
●●
●●●●
●●
●●
●●●●
●●●
●●●●●
●●
●●●
●●●●
●
●●
●
●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●
●●
●
●
●●
●●
●
●
●●●●
●●●●
●●
●
●●
●●●●
●●●
●
●●●
●●
●●●●●●
●●●●
●
●
●

●●●
●
●●●
●●●●
●●
●●●●
●●
●●●●

●●

●●●●●●
●
●
●●

●●●●●●
●●
●
●●●●
●●
●●

●
●●●●●

●
●
●
●●●●
●
●●
●
●●●●●●●
●
●
●●
●
●●
●●●
●●●
●
●●●●●●●
●●
●
●●●●●●●●●●●●●●
●
●
●●●●
●
●
●●●●●
●●
●
●●●●
●●●●●●

●
●
●
●●
●●
●●
●●●●
●
●●●
●
●●●
●●●●●●●●●●●
●
●●●●●●
●
●
●●
●●
●
●●
●
●●●●●●
●
●
●

●
●●●●
●
●●●●●●●●●

●
●
●●●●
●
●●●●●●●
●
●
●

●●●
●●●●
●●
●
●●●●●●●●
●
●
●●●
●●
●●
●●●●●
●
●●●●●●
●
●●
●●●●●
●
●
●●
●●
●●●●●
●●●●●●●
●●●
●
●
●●●●●
●
●●
●
●●
●●●●
●
●
●
●
●●
●●●●●●●●●●
●
●
●
●
●●
●●●●
●
●●●●
●
●●●●●
●●
●
●●●
●
●●
●●●
●●●●●●●●●●●●●
●
●●●
●
●
●
●●●●●●
●
●●●●
●
●

●
●
●●●●●●
●●●●
●
●●●
●●●●●●●●
●
●

●
●
●●●●●●
●
●

●●●●
●●

●●
●●
●
●
●
●●●
●
●●
●
●
●
●●
●
●●
●
●
●●●●●●●●
●
●●●●
●
●●●●●●●
●
●●●●
●
●
●●●●
●●●●●
●●●●
●
●●
●
●●●
●●●
●●●●●
●●●●
●

●●●
●
●

●

●●●
●
●
●
●
●●
●

●
●
●●
●●●●●●
●
●
●
●●●●●●●●●
●
●
●
●
●●
●●●●●●
●●●●●●●

●

●
●
●●
●●
●

●●
●●●●●●●●●●●●●●
●
●●●
●
●●●●
●●●●●
●
●●
●●●●●●●●
●
●●●●●
●●●●●●●
●●●●●
●
●
●
●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●
●●●●●
●
●●●●●●●●
●●●●●

●

●●●●●●●●●●
●●●●●
●
●●
●
●●
●
●●
●
●
●●●●●
●
●●●●●●●●
●
●●
●
●●●
●
●●●
●●●●●●●●●●●
●●●●●
●●●●●●
●●
●●●●
●
●●●●●●●●
●
●●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●
●
●
●●
●●●●●
●●●
●
●●●●●
●●
●●●●●
●●
●●●●●
●
●
●
●●
●●●
●●
●●
●●
●
●
●
●●●●●●●

●●●●●●●●
●●
●●●
●
●
●●
●●
●●●●●●
●●●●
●●●●●●
●
●

●

●●
●
●●●
●
●●●
●●●●
●
●●●●●●

●

●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●
●●●
●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●●
●●●●●●
●
●●●●●●●
●
●●●●●●
●●
●●●
●
●●
●
●●●●
●●●●●●●●
●
●●
●●●●●●
●
●●●●●●●●●●●●●
●●●●●
●●
●
●
●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●

●●

●●●

●

●●●

●●

●

●●●●●
●
●●●●
●
●

●●●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●

●●

●
●
●

●●

●

●●●

●●

●

●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●
●

●●

●●

●

●
●

●

●●

●

●●
●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●●
●
●●
●

●
●
●

●

●

●●
●

●

●●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●●
●
●
●
●
●
●

●●●
●

●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●

●●

●●●●

●●●

●●●●●
●
●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●
●
●

●●●●●●●
●●
●
●
●●●●●
●●
●
●●●●
●●
●
●●●●●
●●●
●
●●
●
●
●
●●●●●●●
●
●
●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●

●

●●

●

●

●●

●

●●
●
●
●
●●
●●
●●●●●●●●●●●●●●
●
●●

●
●

●

●

●●

●●

●●

●

●

●

●●

●

●

●●

●
●
●

●●
●●●

●

●●●

●

●

●

●

●●●●
●

●

●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●

●

●

●
●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●●

●●●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●
●

●●
●
●●
●

●
●
●

●

●

●●
●

●●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●●●●

●
●

●

●
●

●
●

●●●
●

●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●

●●

●●●●

●●

●●●●
●
●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●
●
●

●●●●●●
●●
●
●
●●●●●●
●●
●
●●●●
●●
●
●●

●

●●
●
●●●
●
●●
●
●
●
●●●●●●●
●
●
●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●

●●●

●

●●
●●
●●
●
●●
●●
●●●●●●●●●●●
●
●●

●

●

●

●●●●●●

●

●

●●

●
●
●

●●
●●

●

●

●

●●●

●●

●

●●●
●

●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●
●●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●●

●

●
●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●
●

●●
●
●●
●

●
●
●

●

●

●●
●

●●●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●●●●

●
●

●

●
●

●
●

●●●
●

●●●

●

●●●●●●●●●●●●●●●●●●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●

●●

●●●●

●●

●●●●●
●
●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●
●
●

●●●●●●●
●●
●
●
●●●●●
●●
●
●●●●
●●
●
●●

●

●●
●
●●●
●
●●
●
●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●
●
●●
●
●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●

●

●

●●

●

●

●

●●●●●
●●
●
●
●

●

●

●●●
●

●
●
●●●●●●●
●●
●
●

●●●

●

●

●●
●
●●

●

●●●
●●

●

●

●

●

●●●
●

●

●●

●●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●●
●
●
●●

●

●
●●
●●
●

●

●
●●●●
●●●

●

●

●

●●●
●

●●●●●
●
●
●

●

●
●

●
●●

●

●
●

●

●●●

●
●

●

●

●

●

●
●
●
●●●
●

●
●

●

●
●

●

●

●●

●

●
●
●

●

●
●

●●

●

●
●

●

●
●
●
●

●
●

●●
●

●
●●●●

●

●

●
●

●

●
●
●

●
●●●●●●●
●
●

●

●●●●

●
●

●

●
●
●
●●
●●●
●
●

●

●●●

●
●

●

●

●

●
●●●●
●

●

●
●●●

●

●●●
●
●

●●
●
●●

●
●●

●

●

●

●

●●
●●●●

●

●
●

●●

●

●

●
●●●●●
●

●
●●

●

●●
●

●

●
●
●●

●

●●●●

●●
●●●

●

●●
●
●●●●

●●●●●

●●●●●
●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

●●

●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●●●

●●
●
●

●
●●

●

●

●
●●

●●

●●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●●

●●

●

●

●●●
●

●●

●

●

●●●●●●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●●●

●
●

●

●●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●●●●

●●

●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●●●●●●●●
●●
●

●●

●

●
●
●●●●

●

●

●

●

●●
●●

●
●●●●
●●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●
●

●

●

●
●

●●●

●

●

●

●●●●●
●
●

●

●
●●

●

●●●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●●

●

●●

●

●●

●

●●

●●●

●

●●●●●

●

●

●

●
●●

●
●●
●

●

●

●

●
●●●●
●
●

●
●

●●●

●

●

●●

●●
●

●

●
●
●

●

●●

●●
●●
●

●

●
●●

●
●●
●

●

●
●

●

●●

●●

●●●●●●●

●

●

●
●

●●●●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●●

●

●●●

●

●●

●
●

●●

●

●●

●

●

●

●●●●●●●

●

●

●●

●●●

●●

●

●

●

●

●

●●●●●

●

●●

●
●

●●●●

●

●

●

●●●●

●

●●●●●

●

●●●

●●
●●●

●

●

●●

●●

●●●

●

●

●

●●

●
●

●

●
●
●

●

●

●●●●●●

●

●●●

●

●●●●●●

●●

●
●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●
●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●
●
●

●●

●

●
●●

●

●

●

●

●

●
●
●
●●●

●●

●

●●

●
●●

●●

●
●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●●

●

●

●●

●●●●●

●
●
●
●●

●●●●

●

●●●●●●●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●●
●
●●

●

●●

●

●

●

●●

●
●●
●

●

●●●

●●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●●

●●●

●

●●

●

●●●

●●

●
●●●

●

●●

●●

●

●

●●●

●

●●

●●
●
●

●

●●
●

●

●

●●

●

●●●●●●

●

●

●

●
●

●

●

●●●●

●

●

●●
●

●●●

●

●

●●

●●

●

●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●●
●

●

●

●

●●
●

●●

●

●
●

●
●

●

●●●
●
●●●●●
●

●●

●●

●

●

●

●●●
●

●

●
●

●
●
●
●

●

●
●●

●
●
●

●

●

●

●●

●

●●
●
●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●
●●
●

●

●

●
●●

●

●

●

●●

●●

●●

●

●

●

●●●
●
●

●●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●●

●●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●●●●●

●

●●
●

●

●

●

●

●

●
●
●●

●

●

●●

●

●●●●

●

●

●

●
●●●
●●
●●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●
●●

●
●

●
●●

●

●

●
●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●
●
●

●

●
●●●
●
●
●
●
●
●
●
●●

●

●
●
●●●●
●

●

●

●

●
●

●

●

●

●●●●
●

●

●●●

●

●●

●
●●●
●●

●
●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●●
●
●
●
●

●●●
●
●●●●

●
●

●●●●
●●●
●
●
●●
●

●

●

●

●

●

●

●

●●
●●

●

●

●●●
●●
●
●●●

●

●●
●●

●

●●

●

●
●
●
●●
●●●●●●
●
●

●

●

●

●●●●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●●●

●

●
●●

●
●●●●

●

●
●

●

●
●
●

●

●

●
●●

●●

●

●
●●

●

●

●●●
●

●

●●
●●

●

●

●●

●

●●●●●●
●

●●
●

●
●

●

●●●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●●

●
●●

●

●●

●

●

●

●
●
●
●●

●

●
●

●●

●●

●

●

●

●

●
●●●

●

●

●

●
●

●

●●●

●●

●

●

●
●
●

●

●

●

●●●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●●●●●

●

●

●●

●

●

●

●
●●●

●●●

●

●

●●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

●●●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●●

●●

●

●●●

●

●
●

●●●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●●●
●●

●

●

●
●

●●●

●

●●

●

●

●

●

●
●●
●●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●
●

●●
●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●
●

●

●

●●
●

●

●

●

●●●

●

●
●●●

●

●●●

●
●

●

●

●●
●
●

●

●

●●

●

●
●

●

●●●●●

●●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●
●
●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●
●●
●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●
●

●
●●●●
●
●●

●

●●
●
●●●●●
●●
●
●
●

●

●

●●

●●

●●●●

●
●●

●●●

●
●

●

●●

●●●●

●

●
●
●

●
●
●

●●

●
●●
●
●●

●

●

●

●●
●

●●●

●
●
●
●●●

●

●

●

●
●

●

●
●
●●
●
●●

●●
●
●
●
●●
●●●
●●●●●●
●
●
●
●●
●

●●●
●●

●

●

●

●●

●

●
●
●●
●●
●
●
●

●
●
●
●
●●
●●
●●●
●●

●
●
●
●

●

●

●

●

●

●

●
●●●●●

●

●

●

●
●●●
●

●

●

●

●
●●
●
●
●
●●
●
●●●●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●
●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●

●

●●

●

●●
●

●

●●
●
●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●

●●●●

●●

●●●
●
●●●●●●
●
●●●●

●

●●●●●

●●
●

●

●

●●●●●●

●●

●

●

●

●

●●

●

●
●
●

●

●●

●●

●

●

●●

●

●

●●

●●●●●●●

●

●

●●●

●●●●●

●

●●
●
●●●●●

●

●

●

●●●

●

●

●●

●●●●●●●●

●

●●●●

●●●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●
●●

●●●●●●●

●

●●●●

●●

●●●●●

●

●

●

●

●●●

●●

●

●●

●●

●
●
●●●●●●●●●

●

●

●

●●●●●

●●
●●

●

●●

●●

●

●●
●
●●

●

●●

●

●●●
●
●

●●●●

●●

●●

●●●●●●●●●●●●
●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●
●●●●●●●●●●●
●
●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●●●●●

●

●●

●

●
●●●●

●

●●●●

●

●●●●

●

●●

●●●●

●●

●●●●●
●
●

●

●●
●●

●

●

●
●

●

●
●

●

●●●
●●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●
●
●
●

●●

●

●

●

●

●

●
●

●●

●

●
●●●
●
●●●
●
●●

●
●●●●

●

●

●

●

●
●●●

●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●
●
●●
●

●

●
●●●
●
●

●

●

●
●●●●
●
●●●

●
●

●

●
●●●●
●

●

●●
●

●

●
●

●
●
●

●●●●
●
●

●

●●●●●●●

●

●●
●

●

●

●

●

●●

●

●
●
●

●

●
●●
●●
●●
●
●
●
●
●

●

●

●
●●●
●

●

●
●

●
●
●

●
●●

●

●●●
●
●

●

●

●

●

●

●●

●
●●
●
●●

●●
●

●

●
●●
●

●

●●
●●●●●●●●●●

●

●●●

●

●●●
●
●
●
●
●

●
●
●

●

●

●●●

●

●●●●●●●●●●

●

●

●●●●●
●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●●
●●

●
●●
●

●

●

●

●●●●

●
●

●●

●●●●●●●●●●●●

●

●

●●●●
●
●●●●●●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●●●●●●

●

●

●
●●

●

●

●

●

●

●
●●
●●
●●
●●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●●●●

●

●

●

●●●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●●
●
●

●

●●

●
●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●
●

●

●●

●●●●
●

●●

●

●●

●

●●

●

●
●

●
●

●●

●
●●
●

●

●

●
●

●

●

●

●●●

●
●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●
●●●
●

●●
●●
●

●

●

●

●

●
●●

●

●

●

●●

●
●●

●
●●●●

●

●

●
●

●

●●●●●

●

●

●

●

●

●●

●●

●●●●

●

●●●

●

●●

●

●

●
●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●
●

●

●●

●●●●●

●

●●●●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●●
●●
●

●

●

●

●

●

●

●

●●

●●●●●

●
●

●●●●●

●

●

●

●●

●

●●

●

●●

●
●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●
●
●●

●

●

●
●●

●

●

●

●
●●

●

●

●
●●

●●

●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●
●●●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●
●

●●●●●●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●●

●
●

●●

●●●
●

●

●
●●

●●●

●

●●
●
●

●
●
●

●
●

●

●
●●●●●●

●●●

●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●
●●●

●

●●

●

●●●

●●●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●●●

●
●

●

●●●

●

●●

●●

●●●

●●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●●●

●

●

●

●
●
●

●●

●

●

●●

●
●

●●

●
●

●●●
●
●

●●

●

●
●

●
●

●

●
●
●

●
●

●●

●

●

●

●

●
●

●●●●
●
●●

●●

●

●

●●●

●●

●●●

●
●

●●

●
●

●●●

●

●
●

●●

●

●

●

●
●

●

●

●●●
●●

●

●
●●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●
●
●●●
●●
●●

●

●

●

●

●

●

●●
●
●
●●●●●●●●●

●

●

●

●

●

●
●●
●●●●
●

●

●●●●●
●●●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●
●
●

●●●
●
●●●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●●●
●
●●

●
●

●
●
●
●●

●

●

●
●
●●
●
●
●●
●
●

●

●

●

●

●●
●
●●

●●

●

●

●●●
●

●

●●●●
●

●
●
●

●●

●

●●●●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●
●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●
●
●
●
●
●

●

●●●●●●
●
●

●
●

●
●

●

●
●

●

●●
●●
●

●

●●●

●

●●●

●
●

●

●

●
●

●●

●

●

●●
●●
●

●

●

●
●●
●●
●
●

●

●

●

●●
●

●●

●●
●●
●
●●
●

●

●

●

●

●
●
●

●

●●●

●

●●

●
●●●

●
●
●
●

●

●
●
●●●●
●
●
●●

●
●

●●●
●●

●●●●●
●
●

●
●
●
●
●

●

●

●●●●
●
●●●●●

●

●

●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●
●●●
●

●

●
●●
●

●

●●●
●

●

●

●

●

●●●●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●
●

●
●
●

●

●
●

●

●
●●

●

●

●

●

●●

●●

●●
●

●
●

●●

●

●

●●●

●

●●

●●

●●

●●
●
●

●

●
●

●

●

●●●●
●

●

●

●

●●●

●

●●

●

●

●●

●

●

●
●
●

●

●
●

●

●
●●
●●
●

●

●
●●

●

●

●●
●

●

●

●

●●●

●

●●

●

●
●
●

●●

●

●
●

●
●

●

●

●

●

●
●
●

●●●

●●

●

●

●

●

●●●●●●●●●

●

●

●●
●

●

●●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●
●
●

●

●
●

●●

●

●

●
●
●
●

●

●●

●

●●

●●
●

●

●●

●

●
●●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●●

●
●
●

●

●

●●

●

●●●●
●

●●

●

●

●●

●

●●●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●
●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●●●
●
●

●

●●●

●

●

●●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●
●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

●
●●●

●

●

●

●
●●

●
●

●

●●

●
●
●

●
●●

●

●

●

●

●●

●

●●

●●
●
●
●

●
●

●

●

●

●●

●

●
●●

●●

●●●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●
●

●●

●

●
●●
●●●●●●
●
●

●

●

●
●
●
●
●

●●●
●

●●
●●●
●●●
●●

●

●●
●
●

●

●

●●

●

●

●
●

●●
●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●●

●●●●

●

●

●
●

●

●●●●●●
●

●

●

●

●

●

●●●●

●

●
●
●

●●●●●●●●●●●●●
●
●●
●

●

●●●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●●
●
●●
●
●●●

●
●
●●●
●●●●●
●
●●
●
●

●●●●●●
●●●

●

●

●
●
●●
●●●
●

●●
●

●
●
●
●●

●

●
●●

●
●
●
●
●●
●●●
●
●
●●
●●●●●●●
●
●
●

●●

●●●

●

●
●
●●
●
●

●

●●
●

●

●●
●

●

●

●●●
●●
●●

●

●
●

●●

●

●●

●●

●
●●

●
●●●
●●●

●

●●●●●●

●
●
●●●●

●

●
●
●●

●

●

●

●

●

●
●
●

●●●
●

●

●

●●●
●
●●
●
●

●

●●
●●●●
●●
●●
●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●
●
●

●

●●●●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●
●●

●●

●

●

●●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●

●●●●

●●●

●●

●

●

●

●●●●●●

●

●●●

●

●●●

●

●●●●●

●

●

●

●●●●●●●●●

●
●

●

●

●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●

●●
●●●●●●●●

●

●
●●
●●●●●●

●

●●●●●●●●●●●

●

●●
●
●●●

●

●●

●

●

●

●

●●●●

●●

●

●●●●

●●

●●●●●●●●●●●●●●
●
●●

●

●●●

●

●●

●●

●

●●●●

●●

●●
●
●
●
●
●

●

●
●

●

●

●
●
●●

●
●
●
●

●

●
●

●●
●

●

●

●●●●●

●
●

●
●

●

●

●

●●●
●
●
●●●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●●

●

●
●
●●●
●

●●
●

●
●
●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●●

●●
●●

●●

●

●
●

●●

●●

●●●
●

●
●●
●

●
●

●

●
●

●

●

●●

●●

●

●

●●

●
●
●
●

●

●

●
●

●●

●

●

●
●●
●
●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●
●●
●●

●●
●●●
●
●
●

●●●

●

●
●●
●
●●●●
●●●
●
●
●
●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●
●●
●

●●●
●

●

●●

●●

●●

●
●●
●
●
●
●●
●

●

●●

●
●●
●
●
●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●
●

●●

●
●●●●
●

●

●

●

●●

●

●

●

●●●
●●
●

●

●●
●

●
●

●

●

●●
●

●

●●

●
●
●

●●
●●●●
●

●●

●

●
●
●●

●

●

●

●●

●●
●
●

●●

●●●●
●

●

●
●
●

●
●●●
●

●

●

●

●●

●
●

●

●

●
●●

●

●

●
●
●●
●●
●
●

●●

●●

●●●
●

●

●

●
●
●●
●●●●

●●
●●
●
●

●●

●
●●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●●●
●

●
●●●

●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●●
●
●●
●●●
●
●

●●
●●●

●
●
●

●
●●●
●

●●
●

●●
●

●
●
●●

●
●
●

●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●
●●

●

●
●●

●

●

●
●
●
●

●●

●

●

●●●

●

●●
●

●
●
●●
●●

●

●

●

●
●

●

●

●
●●
●
●●
●
●

●

●●
●●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●
●

●●

●
●
●

●
●
●●

●
●

●●

●

●

●
●

●

●

●●

●

●
●

●●●

●

●

●●●

●
●
●●

●

●

●●
●

●●

●

●
●

●
●

●

●

●
●

●

●●

●
●
●

●

●

●
●

●
●
●●●
●

●
●
●
●

●

●

●

●

●●
●

●●

●
●
●
●●

●●●●
●●
●

●
●

●

●
●●●●●

●

●

●

●
●●
●

●

●
●
●

●

●

●●

●
●●●

●●

●

●

●

●

●
●

●

●
●●

●

●●●

●
●

●

●

●

●
●

●

●
●●
●

●

●

●

●
●●●

●

●

●

●
●
●●●
●

●

●●●
●●●●

●
●
●
●

●

●

●●

●●
●

●●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●
●
●●
●
●

●

●●●
●

●
●

●

●
●
●

●●

●

●

●

●
●

●

●●

●
●●
●
●

●

●●
●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●
●

●

●

●
●
●

●

●●

●

●
●●

●
●

●
●

●
●
●

●●
●

●

●

●

●

●

●●

●

●●

●
●●

●

●●

●
●

●

●

●●

●

●

●

●
●
●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●●
●
●
●

●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●
●
●

●●

●

●

●●

●

●
●
●

●

●

●

●●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●
●

●

●●
●
●
●

●

●
●●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●●

●
●●
●

●●●
●
●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●
●
●●
●
●
●

●

●
●

●

●●

●

●●
●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●
●●
●
●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●
●●
●●
●

●

●

●
●

●

●
●●●

●

●●
●
●
●
●

●●

●●●
●
●
●

●

●
●

●

●

●
●

●

●

●
●●
●
●
●
●

●

●
●

●

●

●
●

●

●●●●●●
●●●
●

●

●
●
●
●

●
●●

●

●

●

●●
●
●

●
●●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●●

●

●
●

●

●

●●●
●●
●
●●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●●●
●
●

●

●●

●
●

●
●
●

●
●●
●

●
●
●

●
●

●

●●
●

●

●

●●

●
●●
●

●

●
●
●

●

●
●
●

●●
●●●●
●

●
●●

●
●

●

●
●

●

●
●●

●●●
●

●
●
●

●

●

●

●

●
●

●●
●
●
●

●●

●●

●●

●

●

●

●●●●●

●
●
●

●

●

●

●

●●
●●●

●●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●
●
●

●
●

●
●

●
●
●

●
●

●●

●

●

●●●
●●

●●

●

●
●

●

●

●

●
●●

●●
●●
●
●

●

●
●

●

●
●●

●

●

●

●

●
●
●

●

●
●

●
●
●

●

●●
●

●
●

●●

●●

●

●
●
●
●
●

●
●
●
●

●

●●

●●
●

●
●
●

●
●●
●

●

●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●
●●●●●
●
●●
●●

●●
●

●

●
●

●

●
●●

●
●
●
●
●●

●●
●
●

●
●

●
●
●
●
●
●
●

●
●

●

●

●

●
●
●●●

●
●
●●●●

●●●

●

●
●

●

●

●

●
●●

●●
●
●●

●

●●●●

●
●●●
●●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●●●●
●
●

●
●

●

●

●
●●●
●
●
●●●
●

●

●

●●
●
●
●

●

●
●●●●●
●
●
●

●●●

●

●

●
●

●

●●
●
●●
●
●●
●●●

●
●
●
●

●●●

●●
●
●●

●●
●●●

●

●
●
●
●
●
●

●

●

●

●●●

●

●
●●
●

●●
●
●

●
●

●

●●
●
●
●●
●
●

●

●●

●●●
●

●

●
●
●●●

●

●●
●

●

●
●
●

●
●
●
●

●

●
●

●
●
●●

●
●
●●●

●

●
●●
●●

●●

●
●
●
●
●●
●

●

●●●●
●●●
●

●●

●

●●

●

●●
●●
●

●
●
●

●
●●●●
●●
●

●

●●
●●
●

●

●●

●
●

●
●

●
●●
●●
●●

●
●●●

●

●
●
●
●●●

●

●

●
●●
●

●●
●●
●
●

●●

●

●

●
●
●

●
●
●
●
●

●

●●●●●

●

●●●●

●●
●
●
●●

●
●●
●●
●
●
●

●●

●

●●
●

●

●●
●

●

●

●●

●●
●●
●

●

●●●●●

●●
●

●
●
●
●

●●
●●
●

●
●●
●●
●

●●

●●●●

●

●

●

●●●●

●
●●

●
●
●

●

●
●
●

●

●
●

●
●

●

●
●
●

●

●

●
●
●

●●

●

●
●●

●●●

●●

●
●

●
●

●
●
●

●
●

●

●
●

●
●
●

●

●
●

●
●

●●●
●

●

●
●
●

●

●
●

●

●
●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●
●
●●

●
●
●

●

●
●

●

●●●●

●●
●

●

●●

●

●●
●●

●●

●
●●

●
●

●●
●●
●
●●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●
●

●

●●

●
●

●

●
●●●●

●

●
●

●
●

●

●

●

●

●

●●●●●
●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●
●
●●

●

●

●
●
●
●

●

●
●

●

●

●
●
●

●
●
●

●

●
●
●

●

●●
●

●

●

●●
●●
●●

●●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●
●●

●
●
●
●

●

●

●
●
●
●●

●

●

●

●

●
●
●
●

●

●
●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●●
●●
●

●

●

●
●

●
●

●

●

●
●

●●
●

●
●
●

●
●

●
●
●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●
●

●

●
●
●
●●

●

●●●
●

●

●

●
●
●

●●●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●
●

●

●●

●
●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●
●
●
●

●
●
●

●
●●
●●●

●

●●

●

●●

●

●●
●

●

●

●●

●
●
●

●

●

●●
●

●
●
●
●

●
●
●●●●

●

●

●

●●

●
●●●
●

●

●
●●●
●

●

●

●
●●●

●

●●●●●●
●●●

●

●

●

●
●●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●

●●

●
●

●

●●
●
●

●

●●

●

●
●●

●
●●
●
●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●
●

●
●●

●
●

●●

●

●
●

●

●

●

●

●
●

●●●

●●●

●

●
●

●

●

●

●
●
●
●
●

●

●
●

●●●

●

●
●

●
●●●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●●
●

●
●

●
●

●●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●
●●

●

●
●

●●

●

●

●

●
●

●

●

●
●●●
●

●

●

●
●●

●
●

●

●
●●
●

●
●
●

●●

●
●

●

●

●
●

●
●
●

●

●●

●

●

●●

●

●

●
●

●
●

●●●
●●
●

●
●

●

●
●

●●●

●

●
●●●
●
●●

●

●●

●●

●
●
●●
●

●

●
●●
●●

●
●
●
●

●
●
●●
●
●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●

●

●

●

●

●

●
●●
●
●

●

●

●●●
●●

●

●

●

●
●
●●
●

●●

●

●

●
●●

●

●
●
●
●●●●

●●
●●
●
●●
●●
●●●
●●●
●
●●●●
●
●●
●
●●●●●●
●
●●●●●●●●●
●
●●●
●
●●●●●
●●●●●●●●
●

●●

●
●●
●●
●●

●
●●

●

●
●

●
●
●●●●●
●
●●
●●
●
●●●
●●●
●

●●

●
●●
●
●●●●
●
●●
●
●●
●●
●

●

●●
●

●●
●●
●
●●●●●●●
●
●●
●
●●

●

●●

●

●
●

●●

●

●
●●●●●●
●

●

●

●●
●●●●●●

●

●●●
●●●●●
●

●
●●
●

●●
●
●
●●
● ●●

●
●●
●

●●●●●●

●
●●
●●●●
●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II
●

●

●●●●
●●●●●●●●●●●●●
●
●

●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●
●●●●●●●●
●
●
●●●●
●
●●●●●●
●
●
●
●●
●
●●●●
●●
●

●●●
●●
●●
●●●
●●●●●
●●●●●●●●●
●
●

●●
●●●●
●
●●
●
●●●●●
●●●

●●
●●
●
●●
●

●
●●
●
●
●●
●●●
●
●
●
●●●
●
●●●●
●

●●●●
●
●
●●●
●
●●●

●

●

●
●●●●●
●●
●●
●●
●●●
●
●

●
●●●●
●●●
●
●●●●
●●●
●
●
●
●●●
●

●●
●
●
●

●
●
●
●●
●●●

●●
●
●

●●
●
●●●●●
●
●
●
●
●●●

●
●●●●
●●
●●●●●●●●●●●●
●●●
●
●● ●

●
●●

●

●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●

●
●●
●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●
●●●●●
●●●●●
●●
●
●●●●
●
●
●●●●●●●●●●●●
●●●●
●
●
●●●
●●●●
●

●
●
●

●
●●●●●
●
●
●●●●●
●
●
●●●●
●●

●●●
●●
●
●
●
●

●●
●●●
●
●●
●

●
●
●
●
●●●

●●

●
●
●
●
●
●●●
●
●
●●
●
●
●
●●●●●
●●
●
●●●●●
●●●
●●●
●●

●

●
●
●

●

●●●●
●

●
●●
●
●●
●
●●
●
●●●
●
●●
●
●
●●●
●●
●
●●●●
●
●●●
●
●
●

●

●
●
●
●
●
●●
●

●●●
●●●●
●
●
●
●
●
●
●●●
●
●●●
●
●
●● ●●●

●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●
●●
●
●●●●●●●●●
●
●●●●
●
●●●●
●●●●●
●

●●
●
●
●
●
●●
●
●
●
●
●
●●●●
●
●●
●
●
●
●●●
●

●●
●
●
●●●●
●

●
●●●
●●
●●●
●
●
●
●●●
●
●●

●
●

●
●
●
●●
●●●●
●
●●●●
●●
●●●
●●
●●●●
●
●●●
●●●●●●
●
●●
●

●
●●
●●
●

●
●
●
●
●
●
●●●
●●
●●●

●
●●●
●
●
●●
●
●
●
●●●
●
●
●

●
●●●●●
●

●●
●●●
●
●
●●●●●●●●●●●●●●
●
●●
●
●

●●

●●●
●
●●●●
●
●
●

●

●●

●
●

●

●

●

●
●
●
●
●

●

●●●●
●
●
●

●●●

●

●●●●●

●

●

●
●●

●

●●●
●
●

●
●●●

●

●●●

●●●●●

●

●●●
●

●
●
●
●
●
●
●
●
●●
●

●
●
●●

●
●●

●●●

●
●

●
●
●

●
●●●

●

●

●

●
●

●
●
●
●

●

●

●
●

●
●
●

●

●

●●
●
●
●
●
●

●

●

●

●
●

●

●
●

●
●
●
●

●

●
●
●
●
●
●●
●

●

●●●
●
●
●

●●●●
●●
●
●

●

●●
●
●

●
●

●
●

●

●
●

●

●

●●●
●●
●
●

●

●
●

●
●
●
●
●

●

●
●●●

●●
●●●
●
●

●
●
●
●●
●
●
●
●

●
●●
●●●
●

●

●●

●

●●

●
●●●
●●

●

●
●
●
●

●●
●

●

●

●
●

●●

●
●●●
●
●

●
●
●●●

●●●

●

●
●

●

●
●

●
●

●

●●●

●
●●

●
●●

●
●
●●

●

●●

●

●
●
●
●●
●
●●●
●●●●
●

●
●
●

●●
●

●

●

●
●
●
●

●●
●●●

●

●

●

●

●●

●

●
●

●
●
●●

●
●
●●●●

●●●

●
●
●
●
●
●
●●●

●
●●●

●
●
●
●●
●●
●
●

●●●
●●●
●
●●
●●

●

●

●●●

●●

●●●

●

●

●●

●
●

●

●●
●

●●

●

●
●●
●
●

●●

●
●
●
●
●
●●

●

●
●
●
●
●

●

●

●

●●
●
●
●

●
●●
●
●
●

●
●
●●●●●●
●
●
●●●●●●●
●●●●●

●

●●
●●
●
●●●
●●●●
●
●

●

●
●

●●
●
●

●
●●●
●●●●
●
●●●

●
●●

●

●
●
●

●
●●●●●

●

●●

●

●
●●
●
●●
●
●●
●●●●
●
●●●
●
●
●
●●●
●●●
●
●●
●●●
●
●●

●●

●
●●●●●
●●
●
●●
●

●
●
●
●●
●

●●●
●
●●●
●
●●●●
●●●
●●●●
●●●
●
●
●
●●
●
●
●
●
●●●
●
●●●

●

●
●●
●●
●
●

●●
●
●
●●
●
●
●●
●●
●●●●●●●●●

●
●●●●
●
●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●
●

●●

●
●

●
●
●●
●●
●●●●●●●●
●●●
●
●●●
●

●

●

●●
●

●●●●●
●

●●●●●
●

●●

●●

●●●●●●●●●●●●

●
●

●

●●

●●●●●●

●●

●●

●
●
●●●●●

●
●●●
●
●●
●
●

●●●

●

●

●

●●
●

●●●●●
●

●●●●●
●

●●

●●
●

●●●●●●●●

●

●

●

●●●

●

●
●

●●

●

●●●●●●

●

●
●
●●
●●
●

●

●●●
●●
●

●
●
●
●

●

●●●

●
●

●

●

●●
●

●●●●●
●

●●●●●
●

●●

●●
●

●●●●●●●●

●

●●●●

● ●
●
●●●

●

●●

●

●●●
●
●●●●●

●

●●

●

●
●●●●
●
●●●●●●●●●●●●●●
●●

●

●●

●●●

●
●●

●

●●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●●
●●●

●

●●●

●●

●●
●
●●

●
●●●●●
●
●
●
●
●●

●

●
●

●

●
●●●
●

●

●
●

●

●

●

●

●
●●●●

●

●

●●●●

●

●●●

●

●

●●

●

●
●●
●
●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●
●
●

●

●●●●●

●●●

●
●
●
●

●

●

●

●●
●
●●
●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●
●

●

●
●

●
●
●

●

●

●
●

●
●

●

●

●
●

●
●
●

●

●●

●
●

●●

●
●

●
●

●

●

●

●

●
●
●

●●
●●
●

●

●●
●

●

●

●●●
●
●●
●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●
●
●
●●

●
●
●

●
●
●
●

●
●
●

●

●

●

●
●
●

●
●
●

●●

●●
●
●●

●

●
●●
●

●

●

●●
●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●●
●

●

●
●

●●●
●
●●

●

●●●●

●
●

●
●

●

●

●

●

●●
●
●●

●

●

●

●
●
●
●
●
●

●

●

●●●●
●●
●
●

●
●●

●●●

●

●

●

●●●●
●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●
●●●●
●
●

●●●

●

●●●●

●
●
●
●●
●
●
●●

●
●●●
●

●●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●●
●

●●

●

●

●
●●

●

●

●
●

●

●

●●
●
●

●

●

●

●●

●

●●
●●●

●

●

●●

●
●
●

●

●●●●●●

●

●●

●●●●
●
●

●

●

●
●

●●
●

●●

●

●●

●

●
●

●

●●
●
●

●

●

●

●
●●

●

●●
●

●●

●

●

●
●
●
●
●
●●●●
●●
●
●
●●

●

●

●●

●
●●

●

●●
●
●●
●

●

●

●

●●
●

●
●●

●●
●●●

●●
●
●
●

●

●
●
●●

●

●

●●
●

●●
●

●●

●●
●

●

●●

●
●●

●
●

●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●
●

●●●

●

●
●●●●
●
●
●

●
●

●
●

●
●
●

●

●

●

●

●
●

●●●

●

●●

●●
●

●

●●●●●
●
●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●●●

●●

●
●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●●●

●

●●

●

●

●
●

●

●●
●
●

●●

●

●

●

●

●●
●
●●●
●
●●

●

●
●●●●●●
●
●●
●

●

●
●
●
●

●

●
●●

●
●
●

●

●

●●

●
●●
●
●
●●●

●

●●●●
●
●●●

●
●

●

●●
●

●

●

●

●

●
●

●
●●

●

●●
●●●●

●

●

●

●

●

●●●

●

●
●
●
●●

●

●

●

●
●●

●●

●

●●●●●

●

●●●●●
●
●

●●●●●

●●
●

●●

●
●
●
●
●

●
●
●
●●●

●
●

●●

●
●●
●
●●●

●
●
●

●●
●
●
●
●
●
●
●●
●

●

●
●●
●●
●●
●
●●●
●

●

●●
●
●

●
●
●
●

●

●
●
●

●●
●●●

●

●●●●

●●

●
●
●

●

●

●

●
●●●

●

●

●
●
●●
●

●

●

●
●
●
●●
●

●

●
●
●
●

●●
●

●

●●

●

●
●
●●●
●●●

●
●●
●
●●

●
●
●
●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●
●●

●

●
●
●●●●
●
●●●●
●
●●●●

●

●
●●●●●●
●●●●●
●●●●●●●
●●
●●
●●●●●●
●●●●●●

●●●●

●
●●

●●
●
●
●
●●
●

●

●
●●●

●
●
●
●
●●●●●●

●

●
●●

●
●
●

●●

●

●

●
●●
●

●

●
●

●
●

●●

●
●●

●
●
●
●
●
●
●●
●

●●●●

●
●

●

●●
●

●

●

●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●

●

●●

●
●

●

●

●●

●
●

●

●●●●●●

●

●

●●●

●

●
●

●
●

●

●●
●
●

●

●
●

●
●●
●
●
●●●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●●●
●

●

●

●

●
●
●●

●

●

●
●

●

●●

●

●

●●

●

●●●

●

●●

●●

●●●

●

●

●

●●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●
●●●

●

●●

●

●

●
●

●

●

●●

●

●●●●
●
●●●

●
●
●

●

●
●

●
●

●

●

●●

●●●●●●
●
●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●
●

●
●●

●

●

●

●

●

●●

●
●

●

●●

●

●
●●
●
●
●
●
●

●●

●
●

●●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●
●
●

●●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●●●

●

●

●
●
●
●

●

●

●●

●●●●
●●●●●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●●

●
●

●

●

●●●

●
●●
●
●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●●●

●
●
●
●

●

●

●

●

●

●

●●

●●●●

●

●
●

●
●

●
●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●
●
●

●
●●
●

●
●
●

●●

●
●
●
●
●
●

●
●●
●●
●●●
●

●
●

●

●
●

●

●●

●●●

●
●

●

●●●
●

●

●
●
●
●
●

●

●
●●●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●
●

●
●●

●●

●

●

●

●

●

●
●

●
●●
●●
●

●

●

●

●
●
●●

●

●
●

●
●●
●●

●
●
●●●

●●

●
●
●●
●

●
●
●

●
●
●
●
●●

●
●
●
●●●
●●
●●
●
●

●
●●●●

●
●
●

●

●●●
●
●

●

●
●●
●
●

●●

●●●

●●
●

●

●
●●
●
●●
●●
●
●●
●●●
●
●

●

●

●

●
●

●
●●●●●●●
●

●●●●

●

●

●●

●
●

●
●

●
●●

●
●

●

●●●

●

●

●
●

●●
●●
●
●
●
●●●●

●
●●●
●●

●

●
●
●
●

●
●●
●

●
●
●

●●
●
●●
●

●
●

●
●●
●
●●
●

●

●

●
●
●
●●
●●●
●●●
●

●●
●
●●

●●

●
●●
●
●●
●

●
●●●●●●
●
●
●●
●●

●
●

●
●
●
●
●
●
●●
●●

●
●

●
●
●●●

●

●●

●●
●
●

●●
●

●
●
●●●●

●
●
●

●●●●●●●

●

●
●

●
●

●●

●●●●●●●●●
●

●

●

●
●
●●
●

●

●
●●●●
●
●●

●●●

●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●
●

●

●●

●
●●●●
●●

●
●

●

●●
●

●

●●●●●

●
●●

●●
●

●

●
●

●

●●
●●

●
●●
●

●

●
●
●●
●
●
●●
●●
●
●

●

●

●●
●

●

●
●●
●●

●
●
●●
●

●

●●
●
●

●●

●
●

●
●
●●●

●
●
●
●

●●

●

●●●
●
●●●●
●

●

●●
●●
●●●●●●●●●●●●
●
●
●
●●
●●●
●●●●●●●●●●●●
●
●●●●

●

●●●●●
●
●

●

●●●●

●

●●
●
●●●
●●
●●●
●
●
●
●
●
●●●●

●
●●
●●

●

●
●
●

●
●
●

●

●●

●

●●
●

●

●
●●
●
●

●

●●

●
●

●●●●
●●
●
●
●
●●●
●
●●
●

●

●

●

●●●●
●

●

●

●●
●

●●●●
●●●
●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●
●

●

●

●
●●

●

●

●●

●●●
●●

●

●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●●

●

●

●
●●

●
●

●
●
●

●

●●

●

●●
●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●
●
●
●

●

●

●
●●●
●●

●
●

●

●●
●

●

●
●

●

●
●
●
●

●
●
●
●
●●●
●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●
●
●
●

●
●

●
●●

●
●

●

●●

●●●

●
●●
●

●

●

●

●●
●

●
●

●

●

●
●
●
●●
●

●
●
●

●●
●
●

●

●

●
●●●

●
●

●

●●●
●
●●
●

●

●●
●
●●
●
●
●●●

●

●

●

●

●●

●

●

●
●●

●
●
●●●

●
●●●●●

●●●●

●

●
●

●

●

●

●●

●
●
●●
●
●●

●●

●
●
●
●●

●●
●
●

●

●●●●
●

●●

●

●

●

●
●

●

●●

●

●●
●
●

●
●

●●
●
●

●
●

●●

●

●
●
●●
●

●●

●

●

●

●●

●
●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●●●

●
●●●●
●
●
●

●

●
●
●

●
●
●
●
●●
●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●
●
●
●
●●●

●

●●
●

●●

●
●

●

●
●
●
●

●●

●●●
●
●

●●
●
●●
●
●

●
●
●●

●

●

●

●
●
●●●

●

●
●●●
●
●●

●

●
●●●

●

●

●
●

●
●

●●

●

●

●

●●●
●
●
●

●

●

●●●
●
●

●

●
●●
●●●

●

●●
●
●●●

●

●
●
●●

●
●
●

●
●
●
●
●●
●●
●

●
●●
●
●

●

●
●
●
●

●
●
●

●
●●

●●●●●
●●

●●●

●
●●
●

●●●

●●
●
●
●

●

●
●●

●
●

●●
●
●●
●●
●●
●
●

●

●

●

●

●
●
●●

●●●●

●●

●
●●
●●

●
●●●●
●

●

●

●

●●●
●

●●
●●
●

●●

●

●

●●●●
●●

●
●

●

●

●

●
●

●

●

●●
●

●
●

●●
●
●

●

●
●

●

●

●●

●
●

●

●

●
●
●●●
●
●●
●
●
●

●●●●
●●●

●
●
●●

●

●●

●
●
●●
●●

●●●

●

●
●
●●

●

●
●●●
●
●
●●
●
●
●

●

●

●
●

●
●

●
●
●
●
●
●
●

●

●

●●

●
●
●
●

●
●●●

●●●

●

●

●

●
●●
●

●

●

●

●●

●
●●●●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●●

●

●

●
●●

●
●

●

●●
●

●●
●●●

●

●

●
●
●
●

●
●●●●
●

●

●

●
●

●

●

●

●
●●

●
●●●●●
●●●●

●

●
●
●
●

●●

●

●●

●●
●
●

●

●

●
●

●

●

●

●

●

●●
●●
●
●●
●●
●

●

●

●
●●
●

●
●

●●

●

●

●

●

●●
●

●

●

●●●
●

●

●●●●
●

●
●

●
●●●

●

●

●

●●

●●●

●

●●

●●

●●●●
●

●
●

●
●

●

●

●

●

●●
●
●

●●
●
●
●●●

●●

●

●●

●
●

●
●●

●

●
●●

●●

●●

●
●

●

●●

●

●
●
●●

●

●

●

●●

●

●

●●●
●
●●●
●●

●

●
●
●
●●●
●●

●●

●
●

●

●
●●
●

●●
●

●
●

●
●

●

●

●

●
●●
●

●

●

●
●●

●

●

●

●
●
●
●●
●
●
●
●
●●
●
●
●
●

●
●
●

●
●

●

●●●
●●

●

●
●
●

●

●
●

●●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●●
●

●

●●●

●

●

●

●

●
●
●●●

●

●

●
●●●●
●●
●

●

●
●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●
●●

●

●
●●
●

●
●

●

●
●

●
●

●

●●

●
●●
●

●
●●●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●●
●

●●

●
●

●

●

●

●●●●
●

●●

●

●

●●

●
●

●●

●

●

●

●●●

●

●

●

●●
●
●●
●●

●
●

●

●

●
●

●●

●

●

●
●●

●●
●
●

●
●●

●

●
●

●
●
●●●

●●

●

●
●●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●
●
●

●

●●●
●
●

●
●
●●

●

●●

●

●

●
●

●

●
●●
●
●●

●

●

●●
●

●

●
●

●●●

●

●
●

●

●

●●

●
●

●●

●
●
●
●

●

●
●

●

●

●●

●●

●

●

●
●●

●

●●
●
●

●

●
●
●

●

●
●●
●
●
●●
●

●

●

●
●
●

●
●
●●

●

●

●●
●
●●●

●
●●

●
●

●

●

●●
●●

●

●
●

●
●
●
●
●

●●
●

●

●

●
●●
●

●●

●
●

●●●
●
●

●
●
●

●

●
●

●

●

●●

●
●
●

●●●

●

●

●
●

●

●●
●

●●●●

●

●●●

●

●●●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●●●

●

●●
●

●

●

●●

●

●
●●●

●

●

●
●

●

●

●
●
●●●●●
●
●●●

●
●
●
●

●

●

●
●

●●●

●

●

●
●

●
●
●

●●
●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●
●
●

●

●
●

●●

●●

●
●

●

●●

●

●●

●
●●

●
●
●
●●●

●
●
●
●

●●

●

●
●

●

●
●●

●

●

●

●

●
●

●●

●

●

●●●
●
●
●

●

●
●
●

●
●
●

●
●●

●

●●

●

●

●

●●●
●

●
●

●
●

●●
●

●

●

●●

●
●●

●

●

●
●●●●
●●●
●●●●

●

●●

●

●
●
●

●

●

●

●

●

●
●
●●●

●
●●
●
●
●
●

●
●

●

●●●
●●●●

●
●

●
●
●

●
●
●●
●
●
●

●

●

●

●●

●●

●
●
●
●●
●●●
●
●

●

●
●●●
●
●●●●●●

●

●●

●

●●●
●●

●

●●●

●

●
●
●
●●
●

●

●

●

●●●

●
●
●●
●
●
●●

●

●●●●
●●●●
●

●
●

●

●

●

●●

●
●●●●

●

●●

●

●
●
●
●
●●
●
●

●●
●

●●

●●

●

●
●

●

●

●
●
●●
●
●

●●

●

●●●

●

●●●

●

●

●

●
●
●●

●

●

●

●

●

●
●●

●●●
●
●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●
●

●

●
●●

●

●

●

●

●
●●●
●
●●
●

●
●
●●●●
●
●

●

●

●

●
●

●●
●●●
●
●

●

●

●

●
●

●

●●
●
●●
●●
●●●●●

●

●

●

●

●
●
●●

●●
●

●

●
●●●

●

●

●
●
●
●

●

●

●
●
●

●
●●
●

●
●
●
●

●

●●

●

●

●

●
●
●
●●

●

●
●

●
●
●

●
●

●●

●
●

●

●
●

●

●

●

●●●

●●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●
●

●
●

●

●

●
●
●
●
●
●●

●

●

●

●

●
●●

●

●

●●

●
●
●●

●

●●
●
●

●

●

●
●

●
●

●

●●
●●
●
●●
●

●●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●
●●

●

●

●
●●●●●●●●
●

●●

●

●

●
●
●
●
●

●

●

●

●●

●
●●
●

●

●

●
●
●●●
●

●

●

●

●

●●●●

●

●
●

●●●●
●

●

●
●

●

●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●●

●●●

●
●●

●

●
●

●

●●
●●

●

●

●●

●

●●●●

●

●
●
●
●

●

●
●

●
●●●●●●

●●
●●
●

●
●●

●●
●
●
●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●
●

●
●●●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●●

●

●●●●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●●
●●

●

●

●

●
●
●

●

●

●●

●

●

●
●
●
●●●

●

●

●

●
●

●
●
●

●
●●●●●

●●●●
●
●●●
●●

●

●

●

●

●

●
●
●●
●●●
●

●

●
●
●●●

●●●
●
●
●●●

●

●●

●●
●

●●
●
●

●●●
●
●●●
●●
●●
●
●

●

●●

●

●
●●
●
●●
●
●
●
●●
●

●●●●●

●●
●●●

●

●
●
●●
●
●
●
●●
●

●
●●
●●
●

●
●●
●●

●●
●
●
●
●●
●

●

●

●

●
●
●

●●
●
●
●●

●●●
●
●●
●●
●

●
●
●

●●●●●
●
●
●

●

●●
●
●●
●

●
●●●●
●

●

●●●
●●●

●

●
●●

●
●
●●

●
●
●●
●●

●

●●
●
●●●

●●●
●●
●●
●
●●
●

●

●

●
●●
●
●●
●
●
●
●
●
●●
●●●●
●
●

●●
●
●●●
●●●
●
●●
●●

●
●●
●●●
●
●●●
●
●

●

●●
●●●
●
●
●

●

●
●
●●●

●

●

●

●
●
●
●
●

●●

●

●●●●

●

●

●
●
●

●

●
●

●
●
●

●

●
●
●●
●

●
●

●
●●●

●
●

●●
●

●

●●

●

●
●
●
●
●

●
●●

●
●●●●

●

●

●●
●
●
●●
●●●
●●

●
●●
●

●

●
●●
●
●
●●
●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●
●
●
●

●

●●

●●

●

●
●●●
●●
●●
●

●
●

●
●
●●
●

●

●
●
●
●

●●

●

●

●

●
●
●●●●

●

●

●●
●
●
●
●

●

●
●

●

●●

●
●●

●
●●
●

●

●
●
●
●
●
●

●

●
●

●●

●

●

●

●●
●

●●
●

●

●

●

●●●

●
●

●
●

●

●●

●●●
●●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●●●
●
●

●
●

●
●
●

●

●●
●
●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●●
●

●

●●●

●

●●●

●●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●
●

●
●

●
●●●
●
●
●
●
●
●●
●
●

●

●●

●

●

●●
●

●

●

●

●
●

●●

●
●

●

●

●●●

●

●●●●

●

●●●
●●
●
●●

●

●

●●

●●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●●
●●●

●

●
●

●

●

●
●●●●

●●
●●●

●

●

●●●●

●

●

●●●
●
●●
●
●
●

●

●●●

●●

●

●●●●

●

●●●●
●

●

●

●

●
●
●●●
●

●●

●
●

●
●

●

●
●

●●
●
●●●

●●
●

●
●

●

●

●
●●●●●
●●
●

●
●●●●

●

●

●

●●

●●

●
●
●
●●

●

●
●●●

●

●
●

●

●●

●

●●●●●

●●

●

●
●

●

●

●

●

●●

●
●

●
●
●
●
●●

●

●
●

●

●

●●

●●
●
●
●

●

●

●
●●●
●
●

●●

●●
●

●●●●

●

●
●
●

●

●

●●●●
●

●
●●●●
●

●
●
●

●
●●

●

●
●

●

●

●

●●
●
●
●
●

●

●
●●
●
●●●●●
●●●●●

●

●

●

●

●

●●●
●●
●●●
●
●
●●
●●●●
●

●

●●

●

●
●

●
●
●●
●

●
●

●

●●
●

●●●●

●
●

●

●
●●

●
●●

●●
●

●

●

●
●

●
●●●
●

●●

●
●●●●●●
●
●
●
●
●●
●●●●
●
●
●●●●
●
●●
●
●
●
●●
●
●●●
●●
●●●●
●●
●●●
●●●
●●●●●●●
●
●
●

●

●
●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●
●
●

●
●●●

●

●●●
●

●
●●●

●●●

●
●

●
●
●

●●

●

●

●

●●●

●
●
●

●
●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●
●
●●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●

●

●

●

●

●●

●

●●●

●●
●●

●
●

●

●

●

●

●●

●

●
●●
●

●
●

●●
●
●
●●

●

●

●

●●

●

●
●●
●●

●
●

●●●

●●

●

●●●

●●
●

●

●●

●

●
●

●●

●
●

●

●●

●
●

●

●

●

●●●

●

●
●●●●
●
●●●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●
●

●

●●

●
●●
●●

●
●
●

●

●
●●
●

●

●
●●
●

●
●
●

●●

●

●

●●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●
●

●
●

●●●
●

●

●

●

●

●
●
●

●

●

●
●
●●

●

●
●
●

●

●

●●

●

●

●
●
●
●

●

●
●

●●
●

●

●●
●

●

●
●

●

●

●
●
●

●

●●
●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●●
●
●
●

●
●

●
●●●●

●

●

●

●●●●●●
●
●
●●
●●●
●
●●●●
●
●
●●

●

●
●●
●

●●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●
●
●
●
●

●
●
●●●

●

●
●

●
●

●

●
●●
●●
●

●●

●●
●
●

●●

●

●
●●
●
●

●

●

●●

●●●

●

●

●
●

●

●●
●
●
●●

●

●

●●

●●
●
●

●

●
●

●●●
●
●

●

●●

●

●

●
●●

●●

●
●

●
●

●
●●

●

●
●●
●●

●
●●

●

●

●
●

●

●

●

●●
●
●

●

●
●●

●

●
●●
●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●
●

●
●
●●

●●●
●

●

●

●

●●
●

●

●●

●●

●

●

●

●
●

●●●

●

●
●
●

●●●
●●

●
●
●●●

●

●

●●

●●

●

●●

●●

●●

●

●
●
●●●
●

●●

●

●
●●
●●

●

●
●
●

●
●

●
●

●

●
●●
●●●

●●

●

●●●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
●

●●●
●
●●

●

●
●●

●

●
●

●

●

●

●●

●●

●●

●

●●

●
●

●●

●●
●●●
●
●
●

●●

●
●●●
●
●●

●

●
●

●●

●●●

●

●
●
●
●

●

●●
●
●

●●

●

●

●

●

●
●
●

●
●
●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●●●
●

●

●

●

●●

●

●●

●

●

●

●●

●●
●
●

●

●●

●
●

●

●

●
●

●

●●

●●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●
●
●

●●

●
●

●

●

●

●

●●

●
●
●
●
●
●

●
●

●
●
●
●
●
●

●

●

●
●●

●

●

●
●

●●●

●

●●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●
●●●●●

●●
●●●

●●

●

●
●
●●
●

●

●
●

●

●

●

●
●

●

●●

●●

●
●

●

●
●

●

●
●●

●
●
●

●

●

●●
●
●
●

●

●
●●
●
●

●
●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●
●

●●

●●

●

●●

●
●

●
●

●

●

●

●

●

●
●
●
●●●
●●

●

●●
●

●
●

●
●
●●●
●●●

●

●

●

●

●●

●●

●

●
●

●
●
●

●●
●●

●

●

●
●●
●

●

●
●
●●

●

●

●

●●

●
●

●
●
●●
●
●

●
●

●

●

●●

●
●

●
●

●
●

●●

●
●●
●
●
●
●
●

●

●

●●

●●●●

●

●

●
●

●
●

●

●

●●
●
●

●
●
●
●●●

●

●

●●●
●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●●
●
●●

●●

●

●
●●

●

●

●
●

●

●

●
●●
●●
●

●

●●

●

●
●●

●

●

●●
●●

●

●●
●●
●
●

●

●

●

●
●

●●
●●

●

●

●

●●
●
●

●●

●
●●●
●

●●
●
●●●
●

●

●●●
●

●●

●

●
●
●●●

●

●

●

●●

●
●●

●●
●●●●●

●

●●

●
●
●●
●
●
●

●

●

●
●●

●●
●

●

●

●●●●●

●
●●●
●
●●●●●●

●
●

●

●
●●
●●
●
●

●

●

●●
●

●

●●

●●●●

●

●●
●
●

●

●●

●●●
●●

●

●

●●●●
●
●●●

●
●
●

●
●

●
●
●●
●●●

●

●

●
●
●●

●
●●●●
●

●

●

●●
●

●
●

●
●

●

●
●
●
●●●
●

●●
●
●

●

●
●

●
●
●●

●●

●

●●

●
●

●●
●●
●
●
●

●●

●

●

●
●

●●●●
●●●●

●

●●●
●
●●●

●

●
●
●
●

●

●

●

●
●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●●

●
●

●

●●●
●●
●

●

●
●
●
●

●

●
●

●●

●

●●

●

●

●

●

●●
●●
●
●

●

●
●●

●●

●●

●

●
●

●
●
●

●

●
●

●
●
●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●●●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●
●
●
●●

●●

●●●
●●

●

●

●

●

●

●
●
●
●

●
●●
●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●●●
●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●●●●●●●
●

●●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●●
●●●
●
●●
●
●●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●
●●●●●

●
●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●
●●
●●
●
●
●
●●●●

●

●
●

●

●

●
●●

●

●

●●

●●
●

●●

●

●

●

●●

●

●
●●

●
●●●
●●●●●

●

●

●

●

●

●●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●●
●
●
●
●

●

●
●

●

●
●●●

●

●

●

●

●

●●●

●●

●
●

●

●●

●
●
●

●

●

●

●
●●
●
●

●

●

●
●
●

●
●
●●

●

●

●
●
●

●

●●●●

●●
●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●
●●
●
●

●

●

●●

●
●
●

●

●●●●●
●●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●
●
●●

●

●●●
●

●●

●●

●

●
●●

●

●

●

●

●

●
●●

●

●

●●

●●●●

●

●●
●
●
●●

●

●●

●

●

●

●

●
●

●●

●

●
●
●●●

●

●
●

●●

●
●

●

●

●

●
●

●
●
●

●

●●

●●
●

●
●
●
●
●●
●
●

●
●
●
●
●
●●●

●

●

●
●●

●
●

●

●

●

●
●

●
●
●

●

●

●
●

●●●
●●

●

●●
●
●
●

●●
●
●
●

●

●●●
●

●

●
●
●

●
●

●●
●
●

●

●

●

●●

●

●●

●

●
●

●

●●●
●

●
●
●

●
●●●●●●●●●
●
●●

●

●●

●●

●

●

●
●
●

●●

●●

●
●●

●
●
●●●

●

●

●

●
●
●

●

●●●●
●
●

●

●
●
●

●●
●●●

●
●●
●

●

●

●●

●
●●

●

●
●
●
●●

●
●●●

●

●●

●●●
●

●

●●

●

●
●●●
●
●

●

●

●

●
●
●●●●
●

●
●●

●

●
●
●
●●

●
●
●

●
●
●

●
●●
●

●
●●

●

●
●
●
●
●
●●●

●●●●●
●

●●●●

●

●●
●●●
●
●

●
●●●
●●●

●

●

●
●●

●

●●
●
●
●
●
●

●
●

●
●

●

●
●
●

●●

●
●
●
●●●
●●●
●●
●
●●
●

●

●●
●
●

●●
●
●●
●

●
●●●
●●
●

●●
●●

●
●●

●

●
●●●●
●
●
●●●
●

●

●●●
●

●

●

●

●●

●
●
●●

●

●
●
●●

●●●●
●
●●●
●

●
●●●
●
●

●●

●

●

●

●
●●
●
●●●
●●●
●

●●●

●

●●

●
●
●
●
●●
●
●●●
●●●

●●●●●
●●
●●
●●
●
●
●●●
●

●

●

●

●●

●
●
●
●

●●●●
●
●●●
●
●
●●

●●●
●

●●

●

●
●●●
●
●●
●
●●
●

●

●
●
●

●

●

●●●●●●●
●●●
●●●●●●
●●●
●●●●●
●●●●●●●●
●●●
●
●●●●●
●●●
●●
●

●●●
●
●●●
●●
●
●●●●●●
●●●
●●●
●
●●●●●
●
●●
●
●●
●
●
●●●●●●●
●●●●
●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●
●
●
●●
●
●●●●●●●●●●
●●●●
●●●●●
●
●●●●●●
●●
●●●
●
●●
●
●●●
●
●
●
●●●●●
●
●●●●
●●●
●●
●●●●●

●
●●●●●●●
●●●
●
●●●●●●
●
●●
●●●●●●●●●●
●●
●●
●●
●
●●●●●●
●●
●
●●●●●●●
●●●●
●●●●
●●●
●
●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●●
●
●●●●●
●●
●●●●●
●
●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●
●
●●
●●●●●●●
●●●
●●
●●●●
●
●●●●●●●●●●●●
●●
●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●
●●
●●●●●●●
●
●●
●●●●
●●●●●●●
●
●●●●●●

●
●●●
●
●
●●●

●
●●●●
●●●
●●
●●●●●
●●●●●●●●●●●
●
●
●●●●
●
●
●
●
●●●●●●
●
●
●

●
●●
●●●
●●●●●●●●
●

●
●
●
●●●●
●
●●●
●●●●●●●
●
●
●●●●●●●●
●
●●
●
●●●
●●●●●
●●●●●
●●
●
●
●●●
●●
●
●●●
●●●
●●●●●●●●
●
●●●●
●
●●●●
●●●
●●●

●

●
●●●
●●●
●●
●
●●●●●●
●●●●
●
●●●●
●
●
●●●●
●
●
●
●
●
●
●●
●●●
●●●●●●●
●

●●●●●
●●●●●●
●●●●
●●●
●

●

●●
●●
●●
●●●
●
●●●
●●
●●●●●
●●●●●●●

●●
●●●●●●
●●
●

●
●●
●●●●
●●●●●

●
●●
●●●
●●
●
●●●●●●●
●
●●●●
●●
●
●
●●●●●●●
●●
●●
●
●●
●
●
●
●●
●●●●●
●●
●●
●●
●●
●●

●
●●●●●
●●
●●
●●
●●●●
●
●●●
●
●●●●
●

●●
●●
●●
●●●●●●●●●●●
●●●
●●●●
●●
●
●
●●
●
●
●●●●●
●
●●
●
●
●
●●●
●
●
●●●●
●
●●●●
●●●●●
●

●●●●●●

●●●
●●●
●
●●●●
●●●●
●
●
●
●
●
●●●
●●●
●

●
●●●
●
●
●
●
●●●●
●●●●●
●●●●●●●●
●●●●●
●
●●
●●●●
●
●●●●●●●

●
●●●●●●
●●●●●●●●●
●
●●●●
●●●●
●●
●
●●
●
●●●●●●●

●●
●
●
●●
●●●●●
●

●
●●●●●
●
●
●●
●
●●
●●●●●●●
●
●●●
●●●●●●●
●
●
●
●
●
●●
●●
●●
●
●●
●
●
●
●●●●
●●
●
●●●●
●●
●●
●●●●
●●
●●
●
●
●●●
●

●●
●
●
●●●●●
●
●●●
●●●
●

●
●●●●●●●
●

●

●
●
●●●●●●●
●
●●●●●●
●●●
●
●
●●
●●
●
●
●
●
●
●●
●
●●●
●
●●●●●●
●
●●●●●●●●
●
●●●
●●
●
●●●●●●

●
●●●●●●●●
●
●
●●●●●

●

●●●●●●●●●●●●●
●●●●●●●
●●●●

●

●●●●●

●

●●●●●
●●

●

●●●
●

●●
●●●●
●
●●●●●
●●●

●●
●
●●●●
●●●
●
●
●●●
●●●●●●
●●
●
●
●●
●●●●
●●●●
●●●
●
●

●●

●●●
●●●●●●
●●●●
●
●●●
●●●●●
●
●
●
●●●
●●
●
●●
●●●
●
●●●●●
●
●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●
●●●●●●●●●●
●●●●●●
●●●●●
●
●●●●●●●●●●●
●●●
●
●●●●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●●●●●
●
●●
●●●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III
●

●

●●●●

●

●

●●●

●

●

●
●

●
●
●
●
●

●
●
●●

●

●

●
●
●
●
●●
●●●
●
●
●

●

●●
●

●●

●

●
●●

●

●
●

●●●

●●
●
●●●● ●

●

●
●●

●

●

●
●
●

●●

●●

●●
●
●●●

●
●●●
●●

●

●

●●
●●
●
●

●

●
●
●
●
●
●

●

●

●
●●

●●

●●●●●●●●●●●

●●●●●●●●
●●●●●
●
●●

●
●
●

●

●●
●

●
●●

●
●●
●●●
●

●●

●
●

●

●

●
●
●●
●
●
●
●●●
●●

●●●●●●●●●●●

●
●
●●●●●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●
●

●●

●
●●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●●

●

●
●
●
●

●

●
●●●

●

●●●●

●
●
●
●●●●●●

●

●●
●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●●

●●●●●●●●

●●●●
●
●

●
●

●●●●●●●●●●●
●●●

●●

●
●●
●

●●

●●●●●●●●●●●●●

●●
●●●●●
●●
●
●

●
●

●●●●●
●
●●
●
●●
●●●●●●●
●
●●●

●
●●
●

●

●
●●●●●●●●●
●
●●●

●●
●●●●●●●●
●

●

●
●

●

●●

●●
●●●●
●●
●

●●
●●●●

●

●●●●●●●
●●
●●

●
●
●
●●●●●●

●

●
●
●●
●
●
●
●
●
●●

●●
●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●●
●
●
●●
●

●

●
●
●●
●●
●●
●

●

●●

●

●

●

●

●

●●
●

●
●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●●●
●
●●●
●●

●

●
●
●

●

●
●
●●

●

●

●●

●

●●●

● ●●●●●●
●●
●
●
●●●
●●

●

●●
●
●
●●
●●
●●
●

●

●
●
●
●
●
●●

●
●

●

●●

●●
●
●●

●●
●
●●
●●●
●

●
●

●●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

● ●

●

●

●
●

●●●
●
●●
●
●
●●●
●●●●●
●

●
●●
●●
●
●●

●
●●

●
●
●
●●
●●

●
●
●

●

●●
●
●●●●

●●●
●●
●●
●

●

●●

●
●
●
●
●

●
●●●
●●

●

●●●

●

●
●
●
●●

●
●
●●●●
●
●
●
●
●
●●●●●●●

●●●●●●
●●●

●

●
●●●

●

●
●●

●●
●
●

●
●●●
●●

●
●●

●●
●●●

●
●
●●●
●
●
●
●●
●

●

●●●

●

●●

●
●●●
●●

●●
●
●●

●
●

●

●●
●

●

●
●
●
●
●

●●●
●
●
●
●
●

●

●●
●

●
●
●
●
●●

●
●●●
●

●

●

●
●

●

●

●
●
●

●●●
●●
●

●

●
●
●●

●

●

●

●
●
●

●

●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R
IV

●●●
●●

●●
●
●

●

●

●●

●
●●
●●
●
●

●

●

●
●●
●●●●
●
●
●●

●
●●●●●

●●

●

●

●

●
●
●

●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●●●●●

●●

●●
●

●●●●●

●●●
●●

●

●

●●
●
●●●●●

●●

●

●

●
●●●●●
●●●●●

●●●●●●●●

●

●●●●●
●
● ●●

●●●
●●
●
●
●

●
●●●

●
●
●
●
●
●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

V ●
●

●
●

●

●

●

●
●

●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●●●●●● ●●●●●●●

●

●●●●

●

●
●
●
●
●
●
●
●●
●

●

●

●

●

●

●

●
●

●
●
●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

Figure 12.7.: Improvement of the objective gap (in percent) with respect to the final dual bound
that is achieved by calling PruneSteinerNodes per call, if a solution was found.

113

EVALUATION OF HEURISTICS: RUNTIME (EXCLUDING PRUNING) [S]

Fat Tree IGen Torus

I

●

●

●
●●●
●●
●●●

●
●

●●
●

●

●●●●

●

●●●●

●●

●

●
●

●
●●●

●

●

●

●●

●●●

●●

●

●
●●●
●

●
●

●●

●●

●

●

●●
●
●

●●

●

●●
●●●
●
●●●●

●

●●●●

●
●
●
●●●
●●●●
●

●●

●●
●●●●

●
●
●●
●●
●

●
●
●

●

●

●
●
●

●
●

●

●
●

●
●●
●

●

●
●●
●●●●●●●
●●
●

●
●
●

●
●

●

●

●●

●●

●●●

●
●

●

●

●

●
●●
●
●
●

●●●
●
●
●●
●
●●
●
●●●

●●
●

●
●●●

●
●
●
●●
●

●

●●
●

●
●
●●
●
●

●●●●●
●●●●
●
●

●●

●
●

●

●

●●●●●●

●
●

●

●
●●●
●
●
●●
●
●

●●

●
●●
●
●
●●
●●

●
●
●

●
●

●

●

●●
●

●

●

●

●●●

●

●
●

●

●

●
●
●

●●

●

●●
●
●
●
●

●

●

●●
●
●

●●
●●
●
●
●

●

●
●●●

●

●●
●

●

●

●●
●●●●
●●
●●●
●●
●●

●

●
●

●

●

●

●

●
●●
●●
●
●
●●
●●
●●
●

●●●

●

●

●●

●
●
●●
●●
●

●●
●●●●

●

●●●
●
●●●

●

●●

●
●
●●●●●●
●
●

●●
●
●●●●
●●●

●
●

●
●●
●
●
●

●●

●
●

●

●
●●

●●
●

●
●●
●●
●
●
●

●

●

●
●●

●

●
●

●

●

●
●
●

●

●
●
●●
●

●
●●●
●
●

●

●●

●●●●●
●
●●

●

●
●
●●
●
●

●●
●
●

●

●
●

●
●●

●
●

●●

●

●
●
●●●●

●

●
●●

●
●●●

●●

●
●

●

●
●

●●
●
●
●
●●

●
●

●
●
●
●

●●●●●

●

●●
●●
●
●

●●●●
●●

●

●
●
●

●

●●
●

●
●
●●
●●●●●
●
●
●
●
●●●●
●
●●●●●
●
●●
●●●●●
●
●
●●
●●

●

●

●●●●
●
●●●●
●●●●●●

●

●●
●

●
●

●

●

●●

●

●●●
●

●
●●

●
●
●
●●

●
●

●

●
●●
●

●
●
●

●

●
●

●●
●

●

●
●●
●●●●
●●●●
●
●
●
●
●●
●

●

●
●

●●●
●
●●
●

●

●●
●
●

●
●●
●

●

●●
●●
●●
●●
●
●
●

●

●●
●
●●●●●
●●●●
●●●●
●●

●●

●
●

●
●●

●●●
●●

●

●●

●

●

●
●●
●
●●
●
●

●●
●

●●

●●●

●

●●●●●●
●●●●
●

●
●●
●●

●●●
●●●●●

●●
●
●
●

●

●
●●
●
●

●

●
●

●●

●

●●
●●

●
●

●

●●
●
●

●

●
●●●●●

●
●
●●●●●●●●
●●●●●

●

●
●
●●●●
●

●

●

●

●●●
●●●●

●

●
●●

●

●
●●●●
●●
●●
●
●●●

●

●●
●
●

●●

●
●
●
●
●●
●
●
●●●●
●●
●

●
●
●●●
●●

●

●●
●●
●
●
●●
●●

●
●

●

●

●

●

●
●
●

●

●
●
●
●
●
●
●

●

●
●
●

●

●
●●
●

●

●

●

●

●●
●●
●
●●
●
●
●●●●●●
●
●●

●●
●●
●
●
●
●●
●●●

●
●
●

●●
●●●
●
●●●●●

●

●●●●
●
●●
●●
●●
●●
●●

●●
●
●
●
●●

●

●●
●

●●

●
●●
●
●
●●●
●●●
●●

●
●●●

●

●●●●●
●

●
●
●●

●
●
●●●
●
●●●

●●

●●●
●●

●
●
●
●●●●

●

●●
●●●●
●
●●
●
●●
●●●●
●●●
●●

●

●●

●●●

●●●
●●
●●
●
●
●
●
●●
●●●●●●●●●
●
●
●●●
●●●
●●
●●
●
●●
●
●●●
●
●●
●●
●
●●●●
●
●●●●
●
●●
●●
●
●●●●●
●

●●●
●●
●
●
●●
●
●

●

●●●●●

●

●●
●●●
●
●●
●
●●●●●
●
●●
●
●
●
●●
●●●●●●
●●●●
●
●

●

●

●●●●
●●●●●●●●●●
●
●●
●
●
●●
●●
●●
●●
●●●●
●
●●●
●
●
●
●●
●
●
●
●

●

●●●

●
●

●
●●
●

●

●●●●

●

●
●●

●
●
●
●
●

●

●

●●●
●●●●
●●
●●●
●●●●●
●
●
●●
●
●
●
●

●
●●

●
●●
●

●●
●●●

●
●

●●●
●●●●
●●
●●●
●
●

●
●
●●
●
●●●●

●

●
●

●
●●●●
●●
●●

●
●
●
●
●●●●
●
●●
●
●●
●●●
●
●●●
●●●
●●

●●
●
●

●

●
●●
●●

●

●
●●●●●●

●

●
●
●
●●

●

●●
●
●●

●

●
●
●

●●●●

●

●
●
●●

●

●●
●
●●●
●

●

●
●
●
●
●

●
●
●

●

●

●

●

●●●
●

●

●●●●●●●●●
●

●●

●
●●
●●

●

●●
●
●●

●

●
●

●

●
●

●

●●●
●
●
●

●

●
●

●●●●●

●
●
●
●
●

●
●

●

●
●

●●●●
●●
●

●
●
●
●●

●

●
●●●●●●●
●

●

●

●●
●●
●●
●
●●

●●
●
●
●

●
●

●●●●
●●
●●
●

●
●●

●
●

●●
●

●

●●

●
●
●

●●●

●

●

●●●●
●
●

●

●●
●
●●●●
●
●●

●
●
●●●●●
●●●●

●

●

●
●

●●
●
●●

●
●
●
●

●●

●

●
●
●●●

●
●
●

●
●

●

●
●●●●
●
●

●
●
●●

●
●●●
●
●

●
●●

●
●
●●

●●●●

●

●
●

●

●

●●
●
●●●
●
●
●
●●
●
●

●
●

●●●●
●●
●
●

●

●●
●●●●●●●
●
●●

●

●

●
●

●●
●●

●

●
●●
●●
●●
●
●●
●

●
●
●●●

●●

●

●

●●
●●

●
●
●
●●

●●

●

●

●●
●
●●●●
●

●
●

●

●
●

●
●●●●
●
●●●
●●
●

●

●
●

●

●

●

●
●
●
●
●

●
●

●●●
●

●

●
●●

●

●

●

●●●●

●

●

●●
●●

●
●
●
●
●

●

●
●

●

●

●
●●

●
●●

●

●
●●●
●

●
●
●

●
●
●
●

●●
●

●●
●

●
●

●

●

●●

●
●●
●

●

●

●

●●

●

●

●●

●
●●

●

●●

●
●●
●

●

●
●

●

●

●

●
●●
●

●

●●●
●●

●●

●
●●●

●

●
●●

●
●

●
●

●

●●●
●

●
●●●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●●●●●
●

●

●●
●●
●

●

●

●

●

●
●

●
●

●
●●

●
●
●
●●
●
●●

●

●
●

●

●

●

●

●●

●
●

●●
●●
●

●

●

●

●
●
●
●
●
●●

●●●●

●
●●

●
●●

●

●
●
●
●

●

●●

●
●●

●
●
●
●●

●

●●●
●●●
●

●

●

●

●

●
●

●●

●

●
●

●●
●●
●●●
●

●

●

●

●●●●
●

●

●

●
●

●

●●
●
●
●
●

●
●

●

●●●
●●

●●
●
●●
●●●●
●

●

●
●●●
●●

●

●
●●●
●
●
●●●

●
●
●
●●●●●
●
●●●

●
●●
●●
●
●

●●

●
●
●
●
●
●

●

●

●
●●●
●

●●
●
●●
●

●

●●

●

●
●●
●
●

●

●●●

●

●●●
●●●
●
●●

●
●●

●

●
●●●
●●●

●
●●
●

●

●

●●●

●●
●●●

●

●●●
●
●
●●
●●
●
●●●

●●
●●
●
●
●

●

●●●

●
●
●

●
●
●
●●
●
●●

●●

●

●

●
●●
●●●●

●

●●●●
●
●●

●

●●●

●
●●
●

●●

●

●

●

●
●

●●

●
●●
●●
●

●

●●●

●

●

●
●
●
●●●●
●●
●●●
●●

●

●
●●
●
●
●

●

●●

●
●
●●●
●●
●

●
●

●

●

●
●●●●●
●●●●●●●●
●●●●
●●
●●

●●
●

●

●

●

●●
●●

●●
●
●
●
●
●
●●
●

●
●
●

●●
●
●

●
●
●
●

●

●●

●●
●

●●

●
●
●
●
●
●
●●

●●
●

●●●

●●

●

●●
●
●

●

●

●●

●
●●
●
●●
●
●
●●●
●

●

●

●●
●

●●

●
●●
●
●

●

●
●
●
●

●●

●

●
●
●
●
●
●

●

●●
●●
●

●

●
●●
●

●●

●
●
●●

●

●
●●

●
●●
●
●●●●

●

●
●

●

●

●
●
●●
●

●
●

●

●●
●●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●
●●
●
●

●

●
●
●●●
●●●

●

●
●
●●
●
●

●●●●

●

●

●
●●
●
●

●

●●●
●
●

●

●●
●

●●
●
●
●
●
●
●●●

●
●
●●

●

●
●●

●
●

●
●
●
●

●●●
●

●

●
●
●

●●
●
●

●●
●●
●
●

●●

●

●

●

●●
●

●●

●

●
●
●

●

●

●
●

●

●●●
●
●

●

●
●
●●
●

●

●
●
●
●
●●
●
●

●●●
●●
●●●
●
●
●●

●
●

●
●
●
●●●●
●

●
●●
●

●●
●
●●
●●
●

●
●

●
●
●

●

●●
●

●●

●
●
●●●
●
●

●
●
●

●●
●

●●
●
●●
●●

●

●

●
●

●

●●
●●

●
●
●
●

●
●●●●●●
●●●
●
●

●

●●

●
●●
●●

●

●
●
●

●
●
●●
●●

●

●
●

●

●
●●●

●

●
●
●

●

●

●

●

●●
●●●
●
●●
●

●

●

●
●●●
●●●
●●●
●

●

●
●●

●

●●●
●
●
●

●

●●
●●●

●

●
●●●●
●
●

●

●●

●
●●
●
●●●

●

●●●
●

●●●

●
●
●●
●●
●●
●●

●
●
●

●

●

●

●●
●
●
●●●

●●
●

●

●

●

●●●
●
●

●

●●●

●

●●

●
●
●

●

●●

●●

●

●●

●

●●

●

●●
●

●●
●●●●

●

●
●●
●
●

●●
●
●●

●
●
●●
●●●●●
●●●
●
●●●

●
●

●

●●
●
●

●

●●
●●●
●
●
●

●
●
●
●●●
●●
●●●
●
●

●
●
●●
●
●
●

●

●

●
●

●
●

●●
●

●

●●

●
●

●

●●●
●
●

●
●
●
●
●

●●
●
●●●
●●●

●

●●●

●●
●●●●
●
●●
●

●
●
●
●

●●●●●●●

●

●

●●●
●●
●●●
●
●
●

●●●●

●●

●●●
●●
●
●
●
●
●

●●●
●●●
●
●
●
●
●
●●●
●●
●●
●

●

●●

●

●

●
●

●
●
●
●●
●
●

●

●

●
●
●●

●
●
●●

●

●●
●●●●
●
●

●

●

●●

●

●

●
●
●●●
●
●●
●●

●

●
●●●

●
●
●

●
●●●●
●
●●●●

●

●

●
●
●

●
●

●
●

●
●
●

●

●●●
●●
●
●

●
●
●●●
●
●
●●●●
●
●●●●●●
●●●
●●
●

●
●
●
●
●●●
●
●

●●

●●

●
●
●

●●●●

●●
●
●
●●
●●●●●
●
●
●●
●

●

●

●●●
●●●
●●●●
●●●
●

●
●
●●●
●
●●●●●
●●●

●

●
●●●
●●●●

●

●●
●●
●
●
●
●●
●

●
●

●

●
●
●
●

●
●

●●
●
●●●

●

●
●

●

●●●
●●

●●

●●

●
●

●●
●
●●
●
●
●
●●
●
●
●●
●
●
●
●●
●●
●●
●●
●●
●●●

●
●
●●
●
●

●
●●●●
●
●●●
●●

●

●
●

●●

●

●

●
●
●

●

●
●●
●
●
●

●

●●●●

●

●
●●●●
●●
●
●
●
●

●
●
●●
●

●●●
●
●
●

●●●
●

●

●●●

●

●
●

●
●●
●
●●
●●
●
●●

●●●●●●●

●
●
●
●
●
●

●

●
●●
●
●
●●

●
●
●●
●●

●
●●●
●
●
●
●●
●●●●

●
●●●●
●

●

●
●
●

●

●
●
●
●
●

●

●
●
●●

●
●
●
●
●
●●●●
●
●

●●
●●

●●
●●●●
●
●
●●
●
●●●
●●
●●
●●
●

●

●
●●
●●
●
●●

●●
●
●
●●●●●
●
●●●●●
●
●
●●
●
●●●●●●

●●
●●●
●●
●
●●●
●●●●
●●●
●●●●
●
●●●
●

●

●●●●
●●●●●
●
●

●●
●●
●
●●
●
●

●

●
●

●

●

●●●
●●
●
●●
●
●●●●●

●

●●
●

●●
●
●

●●
●●
●

●
●
●

●●
●●
●●
●
●

●
●
●

●
●●
●
●
●●●

●
●●●
●

●

●●
●

●

●
●
●

●●●
●●
●●
●
●●●

●
●●
●

●●●●

●●

●●●
●

●
●●●
●
●●●

●

●
●●●

●●●
●
●●
●
●●

●

●

●●●●●●●
●
●●
●
●
●●●

●

●●

●
●

●
●
●
●

●

●

●
●

●

●
●

●●

●
●●●●●

●

●

●

●

●●●

●●●
●●●
●

●

●
●

●
●
●●
●●
●●

●

●●
●●
●
●●●●
●

●

●
●

●●●
●

●
●

●●

●
●
●
●●●●●

●

●

●
●●●●●●●

●
●
●●

●

●
●
●●●
●
●
●●●
●

●

●

●

●
●

●
●
●●●
●●

●

●
●●
●●●
●●●●
●●●●
●●
●●

●
●●●
●●●
●

●●●●
●●●

●
●●
●●
●
●●●

●

●●

●●
●●

●

●
●
●
●
●

●

●●

●
●●

●●

●
●●

●●

●●●
●

●
●

●
●●
●
●●●
●

●

●
●●
●●

●

●●

●
●
●

●
●
●
●

●

●●

●
●
●

●

●

●●

●

●●●●
●

●

●

●●

●●

●

●

●

●

●
●

●

●●●●
●●

●

●●

●●●
●
●

●●
●
●

●

●
●

●●
●
●

●

●
●●

●

●●●
●●
●

●●
●

●

●●

●●

●

●●
●

●
●●
●

●

●

●

●●
●
●●●
●
●

●
●
●
●●
●

●
●●

●

●

●
●
●●
●
●

●

●
●●
●
●

●

●

●●●
●

●
●
●
●
●●●
●
●●

●

●●

●●

●
●●●

●

●
●
●●●

●

●●●
●

●

●
●●

●
●

●

●

●●

●
●
●
●
●●

●

●
●
●
●●

●

●
●●

●●

●
●
●

●

●●
●
●●
●
●
●

●

●

●●
●
●
●●●●

●

●
●
●
●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●●
●●
●

●●
●

●
●

●

●

●
●
●

●●

●
●
●
●

●●●●●●

●

●
●●
●
●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●●
●●

●

●

●

●●

●
●

●

●

●

●●●
●

●
●
●●●

●

●●
●
●

●●●
●

●●

●
●●

●

●

●
●

●●
●●●
●
●

●

●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●●
●●

●
●
●●

●
●●
●

●

●●

●

●

●

●

●●
●
●●

●

●●●

●

●●

●
●●
●

●

●●
●

●

●
●●
●
●●●●

●

●

●

●●●
●●

●

●●
●
●
●●
●●●

●●

●●
●
●

●
●

●
●●
●
●
●
●

●
●
●●●

●●●●●
●

●

●●

●●
●

●

●

●
●

●

●

●●●●●●
●
●

●

●
●

●●●●

●

●●

●

●

●

●

●

●●●●●
●
●

●

●

●●●
●
●
●

●●●
●
●
●●●●●●
●

●

●
●

●●●

●

●
●●
●
●
●
●

●●

●
●
●●

●

●
●●

●●
●
●

●
●
●
●●●
●
●
●●

●
●

●
●
●●

●

●
●
●
●

●
●●●
●●●
●
●

●●
●●●
●
●

●
●

●

●●

●

●
●

●●

●

●●●●●●
●

●●

●

●●

●
●
●

●
●
●●●●

●

●

●
●●●●
●●
●

●
●
●●
●
●●
●
●

●
●●
●

●

●

●●
●

●
●
●

●
●
●
●●●

●

●●

●
●

●

●●●

●

●

●
●

●●

●●●

●

●

●

●
●●
●
●●
●
●●
●
●●●●

●

●●

●●

●
●●

●
●

●
●

●●

●
●

●
●●●●●
●●●
●

●

●

●
●

●

●

●

●
●●●●
●●

●

●
●●
●●●●
●

●●
●●

●

●
●●

●
●

●
●

●
●●
●●●●●●
●
●●

●
●

●●●
●
●
●●
●

●●
●●
●

●●
●
●
●
●●

● ●●

●

●●
●

●

●●

●
●●●●●●

●

●
●

●

●

●●

●●

●●●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
●●●
●●
●●

●
●●

●
●

●

●
●●

●

●

●●

●

●
●
●●
●

●

●
●
●
●●●●
●

●
●●
●●●
●●
●●
●●

●

●

●●
●●●

●
●

●●
●
●
●

●

●

●
●●

●
●
●
●

●●
●

●●
●
●

●
●

●
●

●

●

●●

●

●●

●

●●
●

●

●●
●
●
●
●●●●●

●
●●●

●

●

●

●●●●●
●

●

●

●

●

●

●
●
●●●

●

●●
●●
●

●

●
●●

●●

●
●●
●

●
●●●●
●

●

●●

●

●●
●●
●
●
●

●

●

●

●●
●●
●●●
●
●

●●

●●●
●
●●
●
●●●

●

●●
●
●●

●
●
●

●

●
●●
●●●

●
●●

●

●

●
●●

●●●

●
●

●
●
●

●●●
●

●

●
●●

●●

●
●
●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●●
●●●●
●
●
●●

●●
●

●
●

●●
●

●●
●
●●●●●●

●

●
●●

●

●

●

●

●

●
●
●
●
●

●

●●●●

●
●

●●

●

●●●
●

●●●●

●
●

●●
●

●●

●
●●●

●
●●●

●

●

●
●●●
●●
●

●●

●
●
●●
●●●●
●

●●
●●●

●

●
●
●●
●
●

●●

●

●

●
●
●●

●
●
●

●

●

●

●

●
●
●

●

●

●

●●
●
●●
●
●
●
●●

●
●

●
●●●
●

●

●
●●

●

●
●
●

●

●
●
●
●●
●
●

●

●
●●
●●●●

●

●●

●

●●
●
●
●

●

●●●
●
●●
●●●●

●
●
●
●

●

●

●

●

●●
●

●●

●
●
●
●●●
●●
●
●
●

●

●

●●●

●●

●
●

●
●

●
●●
●
●

●
●
●
●

●●
●●

●●●●
●●

●●●●
●
●●●●●●●
●●●
●
●
●●●●

●

●

●●
●

●●●●

●●
●
●●
●

●
●●●

●

●
●●

●●●●●●
●

●

●

●

●
●
●
●●●
●
●●
●
●●●●●
●
●●●●●●●
●
●
●
●
●
●

●
●●●
●

●

●
●●●
●

●
●

●

●
●
●
●
●●●●●

●
●●●
●
●
●●●
●
●●●●●●●●

●

●

●
●

●●

●
●

●●
●
●

●●
●●●
●●

●

●●

●
●●
●●●●
●●

●

●●●

●

●

●

●●●●●
●●●

●

●●
●
●●●●●

●

●

●

●●
●●
●

●
●

●
●
●●
●●●
●●
●

●

●

●
●

●●
●●●●●●
●

●

●●
●
●
●
●
●●
●
●

●

●
●
●

●
●●●●
●

●●

●

●●
●●●
●
●●

●

●
●
●●●●
●
●
●
●

●
●

●

●●●
●

●

●●
●
●
●●●●●●●
●
●●●
●
●●●●●●●●●
●
●

●●●●●
●
●●●
●●
●
●
●●●●●●
●●
●
●
●

●●●●●●●●●●
●●●●●

●●

●●
●
●●

●

●●●●●●●
●
●
●●
●
●●
●●
●●
●
●
●●●●
●

●●●●●
●●

●

●
●●

●
●●●●
●●●

●

●●

●
●
●
●●

●

●●●●●

●
●●●

●

●●●

●●
●●●

●
●
●●●
●

●

●
●●●●

●

●●
●
●
●●●●

●

●●
●●●●●●●●
●
●●

●

●●●●

●

●

●

●●
●
●
●
●

●
●

●●●
●●●●
●●●●●

●

●

●

●

●

●●

●●
●●
●
●
●●
●●●●
●

●

●

●

●
●
●●

●

●

●

●●

●●
●
●
●
●
●
●

●
●
●●
●
●

●●●●
●●
●

●
●
●
●●●

●

●
●●

●

●●●●●
●

●

●

●●●●●●

●

●
●
●●●●●

●●
●

●

●●●
●
●
●

●
●●●
●●
●●

●
●●
●●●
●●●
●●●●●

●

●
●
●●
●
●●●●●
●
●
●

●

●
●
●
●●●●
●

●
●
●●●

●
●

●

●
●
●

●●
●●
●
●

●
●●

●●

●
●●●

●
●

●●
●●●●●●
●●
●●●●
●●●●
●●
●
●●●

●

●●●
●
●

●

●
●●●●
●
●
●
●●●
●
●●
●
●●
●●

●
●●
●●●●●●
●
●●

●

●

●
●●
●●
●●
●
●●●
●

●
●●
●

●
●
●
●●
●
●●●
●
●●●
●

●●●
●●●●●●
●●

●

●
●
●●●

●

●

●
●●●●●●
●

●

●

●

●
●
●
●●
●
●
●
●
●●
●●●
●
●
●
●●●
●●●●
●
●
●
●

●●
●
●

●

●●●●
●
●●●
●
●●
●●

●
●
●
●●

●●●●●
●●●●●●
●
●

●●
●
●●●

●●
●

●

●●●●●●●●●
●
●●●●
●
●
●
●●

●
●
●
●

●

●

●
●●
●
●●●

●●

●
●●●●

●

●
●
●
●

●
●

●

●●

●
●●
●

●

●●

●

●●
●

●

●

●
●
●
●●●●
●
●
●
●
●●

●

●

●

●

●

●
●●
●
●
●
●●●●●●●●
●●●
●
●●
●●●●
●
●●
●
●

●
●●●●●

●

●
●

●●
●●

●

●

●
●●
●

●

●
●●●
●
●●●

●

●
●
●

●

●

●
●
●

●
●●
●

●

●●●
●
●
●

●
●●
●●
●●

●

●
●

●
●●
●●

●

●
●

●

●

●

●
●●
●●
●
●
●●●

●
●

●●●
●●
●●●●●

●

●
●

●

●
●
●

●
●
●
●

●

●

●

●
●●
●

●●

●
●
●●
●
●
●

●
●●

●

●
●

●

●●
●
●●●

●

●
●●
●

●

●

●●
●

●●
●

●

●
●
●●

●

●

●

●●
●●●●●●
●●
●
●●●
●●●●

●●●
●
●

●●●

●
●●●

●
●●
●

●
●●

●

●●

●

●●

●

●
●
●

●
●
●
●
●
●●●
●

●
●●
●
●

●
●●●
●

●●

●

●●

●
●
●
●●
●●
●●

●
●
●

●●
●

●●
●

●●●

●●●
●
●
●
●
●●

●●

●

●●
●●
●
●

●
●●●
●

●●●●

●●
●
●
●

●
●●●●●
●

●

●

●●●●

●
●

●

●
●

●●
●
●
●●

●

●
●●

●

●

●
●●
●
●

●
●●
●
●●
●●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●●●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●
●●
●●●

●
●●

●

●
●

●
●●

●●
●
●●

●

●
●

●●

●

●●
●●●

●
●

●●

●

●
●
●●
●●
●

●
●
●

●
●●
●

●●

●

●●●

●

●●

●●

●
●
●
●

●

●
●

●
●
●
●●

●

●●
●

●

●

●

●
●

●
●

●●

●●

●

●●●

●

●●
●

●

●

●●

●●
●●

●

●●
●
●●

●●

●
●
●●

●

●

●

●
●

●
●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●●

●
●

●

●●●●

●

●●
●

●
●

●

●●

●●

●●●
●
●

●

●
●
●

●
●
●●

●

●
●
●

●●

●
●●
●
●●
●
●●●
●
●●

●

●●
●

●

●

●

●

●
●
●
●
●
●

●●
●
●
●●
●
●●
●●
●

●●●

●

●
●
●●●

●
●
●●

●

●

●●●

●

●
●
●●●●
●●●●
●

●

●●●
●●

●●●●
●
●●●

●●

●●

●●

●
●

●

●
●●●
●
●

●
●
●
●
●
●
●

●

●●

●●

●
●
●●

●

●

●
●
●●●
●●
●
●●
●

●

●
●

●

●●
●
●●

●

●●

●●

●●

●

●
●

●●●

●

●
●
●●
●●●

●

●●●
●
●

●●

●

●
●
●

●

●●
●●

●
●●●
●●
●●●●
●
●
●●

●●●

●
●

●

●●

●

●●

●●
●
●

●
●

●

●
●
●
●
●●
●●
●●

●

●
●
●

●

●

●
●

●

●●

●

●
●
●

●●

●
●

●
●●
●●
●●
●
●
●
●
●
●
●●
●●

●
●
●●

●
●●

●
●

●
●

●
●●●

●●●

●
●
●
●●

●

●●
●
●
●

●
●

●

●

●

●●
●
●●

●
●●
●●●
●
●
●●
●

●
●●●

●

●
●
●

●

●
●●●

●
●●
●
●

●

●●

●
●●●
●●●●
●
●●
●
●●
●
●●
●●

●●●●
●●●●

●

●●
●●●
●●●
●
●

●

● ●
●
●

●●
●
●

●●
●●●
●

●

●
●
●●

●

●●

●

●

●
●

●●●●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●
●●
●

●●

●●●●
●

●

●●

●
●●
●
●

●
●
●
●

●
●●

●
●

●
●
●●
●●●
●
●
●

●
●●●●●

●

●
●

●

●

●
●

●

●

●
●

●
●●●●

●●
●●
●
●●●●●

●

●

●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●●

●

●
●

●
●
●
●
●●

●
●●

●

●
●

●

●

●
●
●
●●●●

●

●●●●●

●

●

●

●●
●
●
●●●
●●
●

●
●●●
●
●
●

●

●
●

●
●●●●
●

●

●

●

●
●

●

●

●

●
●
●
●●

●
●
●
●●

●

●
●
●
●
●
●
●

●

●●

●
●●●
●
●
●
●●●●
●
●
●

●

●

●

●
●

●

●
●
●
●
●

●

●●●

●

●
●●●●
●
●

●

●

●
●
●

●

●

●
●

●
●●●
●
●

●

●●●●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●●

●

●
●
●

●

●
●

●●

●

●

●●●●
●

●

●

●
●●
●
●●●
●●

●
●
●
●
●
●●
●
●●
●
●●
●●

●

●
●●

●
●
●
●●
●

●
●

●

●
●

●●

●

●

●
●
●
●
●
●

●

●

●●

●
●●
●●

●

●●

●

●●
●●●
●

●
●

●

●

●

●

●
●●●

●

●●●

●
●
●
●●●●
●
●●
●●
●●
●
●
●
●

●●●●
●
●
●

●
●
●

●

●●●●●●

●

●

●●

●
●
●●●
●●●
●
●
●

●●●
●

●

●

●

●

●
●●

●

●

●●
●●●●
●
●

●

●

●
●
●●●
●
●

●

●●
●
●●●●

●

●
●●
●
●●●●

●
●●●
●●
●
●

●

●●
●
●
●
●●
●
●
●

●
●

●
●●
●
●

●

●●
●●●●

●

●●●●●
●
●
●●
●
●●
●
●●
●●
●
●●●●●

●●●
●
●
●●●●

●●

●
●●●●
●
●●●●

●
●●
●

●

●

●●
●●

●

●
●
●●●●●●●

●
●
●●
●

●

●●●
●

●

●
●
●
●●
●
●●●
●●
●

●
●
●

●

●
●
●
●
●●
●

●

●

●

●

●
●

●
●
●

●
●
●
●

●●
●
●
●

●

●
●
●
●

●●●
●
●
●

●●

●
●
●●●●

●
●
●

●

●
●
●
●●
●
●●

●
●

●

●●●

●

●●●●●

●
●

●
●
●

●

●

●

●

●●

●●
●●
●

●●
●
●

●
●●
●
●●
●
●
●●●●
●
●●●●

●●

●●
●●●
●●

●
●
●●
●
●

●●
●
●
●

●●
●
●
●●
●●
●●

●

●●●

●

●
●

●
●●●●
●●●
●●●
●●
●
●
●●

●

●●●●●●
●
●

●

●
●
●●
●●●●●●●●●●
●
●●●●
●
●●●

●
●
●
●
●
●
●

●

●

●●●
●
●●●

●

●●●●●
●
●●●

●

●●●
●●●
●
●
●
●
●●●

●

●●
●
●
●
●●●
●

●●

●
●●●●
●●●

●●
●
●●●●

●●

●●●●●
●
●●●
●
●●
●●

●

●●●●●●●
●
●

●
●
●●

●

●●

●

●
●
●

●

●

●
●
●●

●
●
●

●

●●

●
●
●●

●●

●
●
●●
●

●●

●

●

●
●●

●

●
●

●
●

●

●

●
●
●●
●
●
●
●●
●
●
●
●●

●
●
●

●
●
●
●

●
●●●

●

●●

●

●
●
●

●
●

●●
●

●

●●●

●

●
●
●

●
●●
●
●
●
●●●

●

●●●●●

●

●

●●●●

●

●
●●●
●●
●

●

●
●

●●

●

●
●

●

●

●
●

●●

●
●
●●
●

●
●

●

●

●●

●

●
●
●
●●●

●
●
●●●
●●●
●
●
●
●
●●

●
●●●●●

●

●

●

●

●

●

●
●

●
●
●●●
●
●

●
●●
●
●
●

●

●●●

●●●
●●
●
●●●
●
●●
●
●

●●

●

●
●
●
●
●
●●●
●●
●●●●●●
●

●

●
●

●
●

●

●
●●●

●
●
●●
●
●

●

●

●

●
●●

●

●●●●

●
●

●●●
●●

●
●

●

●●●●●
●●
●●
●
●
●●

●

●●●●●
●●●
●
●

●●
●
●

●

●●
●●

●

●

●
●
●

●
●●●

●
●
●●
●
●
●●
●

●●
●●
●
●●●●
●
●
●
●●●
●
●
●●
●●●
●
●●

●

●
●●
●

●
●
●●

●

●

●●●

●●

●
●
●
●
●
●

●

●
●

●

●●●●
●

●
●
●●●
●
●●●●●
●
●●●●
●●●●●
●
●
●●●
●●
●

●●
●
●●●●●●●●

●

●
●●●●●●●●●●
●●●●●
●●●●
●
●
●●
●●
●●
●

●

●
●●
●

●
●●●
●
●●●●●
●●●●

●
●
●
●

●
●

●
●●
●
●●●

●

●
●●●

●
●
●
●
●
●

●
●
●●●

●

●

●

●●

●
●

●

●
●
●●
●

●●●●

●
●
●

●
●

●

●

●

●
●●

●
●●●●●●●●

●

●
●

●●●●●●●
●
●

●
●●

●

●●
●

●
●

●

●

●●●
●
●●●●●

●
●●●
●

●

●
●
●
●●●●●●●●●
●●●●
●
●
●

●

●
●

●

●●

●
●
●●
●
●
●
●
●

●

●
●●
●●
●●
●

●

●●●
●
●●

●

●

●

●●●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●

●
●

●●●●
●●
●
●
●●
●

●●
●
●●

●

●

●●
●
●
●●
●
●
●
●

●
●●

●
●●●●●●

●
●●
●
●
●●●●

●
●●

●
●●
●

●

●
●

●

●

●

●

●●●

●

●

●
●●●
●
●●

●

●

●

●
●●●●●●

●

●

●●●●

●●●
●
●
●●
●
●
●
●

●●●
●
●
●
●
●
●●●
●●●●●
●
●
●
●
●
●
●●
●●
●●
●●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●●●
●●●
●●
●
●

●

●

●●

●
●
●
●●●●●
●
●
●●

●

●
●
●
●

●●
●●●
●

●
●●

●

●

●

●

●

●
●
●

●

●●●●●●●

●

●
●●●

●
●
●

●

●●
●

●●●●●
●●●●
●
●●●

●

●●●

●

●●●

●

●

●

●
●
●●

●
●
●●

●●

●●

●

●
●●
●●
●

●

●
●●●
●
●
●●
●●

●

●●
●●
●

●
●●●
●
●●
●●●
●

●

●●
●●
●
●
●●

●

●●
●

●

●
●●●
●
●

●

●
●●●●

●●

●

●
●
●

●

●

●

●

●

●●
●
●
●●
●
●●●●

●●

●●●●●

●

●●●●●
●●
●●
●

●

●
●●●
●●
●

●●

●

●
●
●
●
●

●●
●

●
●
●
●
●●

●

●
●
●
●●●●●
●

●●
●
●
●
●●●●

●

●
●●●
●●●
●
●●●●

●

●

●●
●●●

●

●
●●

●
●
●●
●
●
●
●

●●
●●
●

●●
●●
●

●

●

●

●

●
●●●●
●
●●●●●
●
●
●●
●
●
●

●

●
●●
●
●
●

●

●

●●●

●

●
●

●●●
●
●●
●

●

●

●●
●
●

●

●

●

●

●●●●

●
●
●
●●●
●●●
●
●

●

●●●●●
●●

●●●
●
●●●
●

●
●

●

●
●●
●

●●
●

●●

●●

●
●

●
●●

●

●●

●
●
●
●●
●●

●
●

●
●●

●

●

●

●●●●
●
●

●
●●●●●

●

●
●
●

●

●

●
●
●●

●
●●●●

●

●

●

●

●●●

●

●

●
●

●

●
●
●
●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●●

●
●

●●

●

●●●
●

●●●●●●
●●●
●
●

●

●

●
●

●
●
●
●

●●●●●
●

●

●

●

●
●

●

●●

●
●
●●

●

●●

●●●

●

●
●

●

●
●
●
●●
●●
●
●●●●
●
●●●

●
●●
●
●
●
●
●●●●●●
●●
●●
●
●
●

●
●●
●●
●
●

●

●●
●●●●
●
●●
●●●●●

●●

●
●
●
●
●
●
●

●●
●●

●
●
●
●

●

●
●

●●

●

●

●●
●

●
●

●
●

●

●●
●

●●
●
●●
●●

●
●
●

●

●

●
●
●

●

●●●●●●

●

●●●

●

●
●●●

●

●
●●●
●●
●

●
●●

●

●
●

●

●

●●

●
●
●

●
●
●
●●●
●

●
●●●

●

●
●

●
●●●
●
●●
●

●

●

●

●●
●
●

●

●
●●
●
●

●
●●
●
●●
●

●

●

●

●
●
●
●●
●●

●

●
●

●
●

●

●●
●
●●●●

●
●
●
●
●
●

●

●

●

●
●

●

●●●●●●
●
●

●

●

●

●●
●

●

●
●●●

●

●
●●
●
●●●
●

●●

●

●
●
●
●●
●

●

●

●
●
●

●

●

●

●
●●

●
●
●
●●
●
●
●
●

●
●

●

●

●
●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●●●

●

●

●

●
●●●●●●
●●

●●
●
●

●

●

●●

●

●

●
●
●●
●
●●
●
●●
●
●

●

●●●●

●

●●

●

●
●

●

●●●

●

●
●●

●
●

●●●
●
●

●●

●●
●

●

●

●
●
●
●●

●
●

●
●

●

●●

●

●●
●
●●
●●
●

●

●●●
●
●●●●●

●
●●●
●

●
●●
●

●

●

●
●
●●

●

●

●
●

●

●
●●●●
●
●

●●
●
●●●
●
●●

●

●

●
●
●●
●●●

●●●
●

●
●
●●
●
●●
●
●●
●

●

●
●
●●●
●
●●

●
●
●

●●●
●●
●
●

●
●
●●●●●●
●●

●

●

●
●
●
●

●
●
●●●
●●●

●

●
●●
●●●
●
●●
●
●●●●
●●●●●●
●●●
●

●●

●
●●●

●

●

●

●

●

●
●●●
●

●●●
●
●
●
●

●●●
●●

●
●
●●●●●●
●
●

●

●
●

●

●●

●

●●●
●

●

●

●●●●●
●
●●●
●●

●

●●●
●
●
●●
●

●

●

●●
●●

●●●

●

●●●

●●

●●
●●
●●●
●
●

●●

●●●●●●●
●●●
●●●
●

●
●●
●
●●
●
●
●●
●

●

●
●
●
●●●●●●
●
●
●●●
●
●●
●●●
●

●
●●
●
●●●●
●
●●
●●●
●●●
●
●●●●

●
●●●●●

●

●
●
●
●●
●●●

●

●
●●
●
●

●

●
●
●●
●
●

●
●●●●●

●

●●
●●
●
●
●

●

●
●

●

●

●
●
●
●
●
●
●
●●
●

●●

●

●

●
●●●
●●●●●
●
●
●●●●

●

●

●●

●●●●●

●

●●●●●
●●
●●
●

●
●
●
●
●
●●●

●●

●

●
●●●●
●●●●●
●●●
●●
●

●
●
●●●●
●
●

●

●
●
●
●
●
●●●●
●

●●
●
●
●●
●

●
●
●

●

●
●●●
●
●●
●
●●

●

●
●
●●●
●●●●
●

●
●

●
●●●●

●

●●
●●●●
●

●

●

●
●
●

●
●●

●

●●
●
●
●

●
●

●

●●●
●

●

●

●
●
●
●

●●
●
●●

●
●
●●
●
●
●
●

●

●
●
●
●
●

●
●

●●
●●●●
●●●●●●●
●
●●
●●●

●

●

●

●

●

●
●●

●●

●●●
●
●

●●●
●●●
●●
●●●●
●
●

●

●●●●●●

●

●●
●
●

●

●
●
●●●●●

●
●
●●
●
●●

●
●●●

●
●
●
●
●●
●
●
●●

●●
●
●
●
●
●●
●
●●●●
●

●
●
●

●●●
●●●●

●

●

●
●●●

●

●
●
●
●●

●

●

●
●
●
●●

●

●●

●
●●

●●●
●●
●●●

●

●●●●●
●●
●●●●●●
●●●●

●
●
●

●

●●
●
●
●

●●●●

●●

●
●
●●
●
●●
●
●●
●
●●
●●
●●

●
●●
●●
●

●

●

●
●

●●
●

●
●
●●●●
●
●

●●●●
●●
●●●
●
●
●●
●●
●●●
●

●

●
●
●
●
●
●●

●

●
●●

●

●●
●
●

●

●

●
●●

●
●
●
●

●

●●●●
●●●●

●

●

●

●●●

●

●
●

●

●
●
●

●
●●●
●●

●●●
●●●●●
●
●

●

●●●

●

●●

●
●●●
●

●

●
●
●●
●

●

●●●●●●●
●●
●
●
●

●

●

●●

●

●●

●●●●

●

●●

●●
●

●

●
●●

●●●●

●

●●
●

●

●
●●●●
●
●

●
●

●●

●

●●●

●

●●

●

●

●

●●●●●●

●

●●
●
●

●
●
●
●●

●

●

●
●

●●
●

●

●●
●
●

●●
●
●
●
●

●

●●●

●

●
●

●

●
●●●●

●

●●●
●●●●
●
●
●●●
●
●●

●

●
●
●

●

●
●●●●
●●
●

●

●
●

●

●
●
●

●

●
●

●
●

●●●●

●
●●

●

●
●
●
●
●●
●
●

●

●
●●
●

●
●●
●

●
●●

●

●●
●●
●

●●●

●

●
●

●

●●
●

●

●

●●
●
●
●

●●●
●
●
●●
●●●
●
●

●●
●
●●

●

●
●

●

●
●

●
●

●
●
●●

●

●

●

●●●●●
●
●
●
●
●

●
●

●
●

●

●●
●
●
●●
●●

●

●

●
●

●

●

●
●●●

●

●

●
●
●
●●

●

●
●●

●

●
●
●●●●

●

●●
●
●

●●

●

●●

●

●

●

●
●●
●
●●●●●

●●
●

●●●

●

●

●
●

●●

●●

●

●
●
●●●●
●●
●
●

●●
●●
●
●●
●
●●●
●

●●

●●
●●
●

●

●
●

●

●
●●
●
●

●●●●●
●
●●●

●

●

●

●

●

●
●●
●●●●
●
●

●●
●
●

●
●●●
●●
●●●

●●

●
●●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●●
●●

●

●●●

●
●

●

●●

●

●●
●

●●●●●
●

●●

●
●●●●

●

●

●
●

●

●●●●●●●●●●●●

●
●●●
●●●
●

●
●●●●●

●
●
●

●

●●
●
●
●
●
●●
●

●

●●
●

●
●

●●
●
●

●●

●

●
●●●●
●

●

●
●●
●

●
●●●
●
●
●
●
●
●

●

●●●
●
●

●
●

●
●●

●

●●●
●●●
●
●●
●
●

●

●●
●
●●
●●
●●
●

●

●
●

●

●
●
●●
●
●
●

●●

●●●
●
●●

●●
●
●●
●

●

●

●
●
●●
●
●
●

●●
●●
●
●

●

●
●
●
●

●●●●●●

●

●●

●

●●●
●
●
●
●●
●

●

●●
●
●
●

●●
●●
●●
●●●

●
●

●
●●●
●
●

●

●

●●

●
●
●●●
●●
●
●

●
●
●●

●
●●●●

●

●

●

●
●
●
●●●
●
●●●

●
●

●
●

●
●

●●

●

●●●●●
●

●●

●

●

●●
●●●
●●●●

●

●

●

●●●●●●
●
●●

●

●

●

●
●

●
●●
●●●
●●

●●
●
●

●●●

●

●●●
●
●
●
●●●●
●

●

●

●
●

●

●
●●●

●

●

●

●
●●●●

●

●
●
●●

●

●

●
●
●
●
●

●●

●●

●●
●

●
●
●
●●●
●

●

●
●●

●

●●●●●

●●●●●

●●
●

●

●
●
●

●●
●

●
●

●
●
●●

●

●
●

●
●
●●
●
●
●

●●

●

●
●
●

●

●●●
●
●
●
●

●

●
●
●●

●

●

●

●

●

●
●
●
●●

●

●●●●

●

●
●●●

●●

●

●

●

●

●●

●

●
●
●
●

●

●●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●●●

●

●

●●

●●
●
●●

●●●●●●
●●●●

●
●

●

●●●
●

●

●●
●
●●
●●●

●●

●

●

●

●

●●●
●

●
●
●
●●
●

●
●
●

●
●●

●
●●●

●

●●

●●●

●
●

●●

●

●●●●●
●●
●●
●

●
●
●●●●
●
●●●

●●
●

●●
●●
●
●
●●●●
●
●

●

●
●

●

●

●
●●

●

●
●
●
●
●
●

●
●

●

●●

●

●●

●●

●
●●
●●
●

●●
●
●
●●
●
●

●

●●●
●
●
●●
●
●●

●●

●

●
●●
●●
●●
●

●

●

●

●
●
●
●
●

●
●
●●

●
●●●
●

●

●
●
●

●●

●
●

●

●

●

●

●●●●
●

●●
●●
●
●

●

●

●●

●

●

●●

●

●●●●●●
●

●

●

●

●
●

●●
●
●

<
 0

.1
0.

5
2

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●
●●●●●
●
●●●
●●●●●
●
●●
●
●●●●
●●
●
●

●
●●●

●
●
●
●●●●●●●
●
●●
●●●
●●●

●
●
●
●
●●●

●

●●●●●●

●
●
●●●

●

●●●●●
●
●●●●

●

●●●●●●
●●
●
●
●●●
●●●●●●●●●●
●
●

●
●●●
●●
●●
●

●

●●●●
●
●●
●●
●●●
●●●●●
●
●●
●
●●●
●
●●
●●●●●
●●●●●●●●●
●●
●
●●●●
●

●●
●
●●
●

●●●●
●
●●●●●●
●●●●●●
●●●●

●

●

●

●
●●●●●
●●
●
●
●
●
●
●●●
●●
●●●●●
●
●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●●
●
●●●●●
●●●●
●
●
●●●●●
●
●●●
●●●
●
●
●●●●●●●●●
●
●
●
●
●
●●
●●●●●●
●
●
●●
●●
●
●
●●
●
●
●●●●●●●
●●●●
●
●●●●●
●●●●●●●●

●

●●●
●●●●●
●
●●
●
●●
●
●●
●
●
●●●●●
●●●
●
●●●
●
●●●●●●●●●
●●●
●
●
●
●
●
●●

●

●●●
●
●
●●●
●
●●●●●●
●●●●●
●
●●●●
●●
●

●●
●●●●●●●●●●●●●
●
●●
●●

●

●
●●●
●●
●●
●●●
●
●
●●
●●
●
●
●
●
●

●
●●
●
●●●
●●●
●
●
●●
●●
●●●●●●
●
●
●
●●●●
●

●
●●●●●●●
●
●●
●●●●
●
●●●●
●
●●
●
●
●
●●
●

●●●●
●
●●
●●●●●●●●●●●●●●
●●●●

●

●●

●

●●●●●●
●●●●
●●●
●●●●●
●●●
●
●●●●
●
●
●

●
●●

●●
●
●●
●
●●●●●●●●●
●
●●●

●
●●

●

●●
●
●●
●
●●●●
●

●

●
●●●
●●
●●●●●
●●●●
●
●●
●●●●
●
●

●

●●●●●●●●
●●●●●●●●●●●
●
●●
●
●●●●●●●
●
●
●
●

●
●●●●●
●●●●
●●●●
●

●●
●
●●
●●●●●●●
●
●●●
●●
●
●●
●●●●●●

●

●

●

●
●●●●●
●●
●
●
●
●
●
●●●
●●●
●●
●●
●●●●●●●●●●
●
●

●

●●●
●
●●●●●
●●●●●●
●●
●●●●●
●●●
●●●●●
●

●●
●
●●●●●●●●●●
●●●●
●●●●●●●
●
●●●
●●●●
●●●●●
●
●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●
●●

●

●●●●
●●●●
●
●●●

●
●●●
●●●●●●●●
●●●
●●●●●
●●●●●●●●●
●
●●

●

●

●

●●
●
●
●
●●●●
●
●
●
●●
●
●
●●
●
●
●●●●
●●
●
●
●●
●
●
●
●

●●●●●
●●●●
●
●●
●
●

●

●
●●
●●●

●●
●●●
●
●●
●
●
●
●
●
●●●

●

●●
●
●●●●●●
●
●
●●
●
●

●
●●●●
●
●
●
●
●●
●●●●
●

●
●●
●
●
●
●●●

●

●
●
●●●●
●●●●●
●
●●●●
●●●●
●
●●●
●
●
●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●

●

●●

●

●●
●●●●●
●
●●●●●●
●●●●●
●●
●●●
●●
●
●
●

●
●●

●

●
●●
●
●
●●●●●●●
●●●●●●
●
●●

●

●
●
●●
●
●
●

●●●
●●●●
●

●

●●●
●●●
●●●
●●●●
●
●
●
●
●
●
●
●
●
●●
●
●●●
●●●●●●
●●●●●●●●●●●●
●●●●
●
●●●●●●●●●
●●
●
●●●
●
●●●●●●●
●
●●●●●●●●●
●●

●

●

●

●●●●●●●●
●●●●
●●●
●●●●
●●●●●
●
●●●●
●
●

●

●●●●●●
●
●●●●
●●●●●●●
●●●●●
●

●
●
●●●●●●●
●●●●●●●●●
●●●
●
●●
●●●●
●
●●●●
●●●●●●
●
●●
●
●
●

●●●●●●●●●
●●●●●●●●●
●
●●●●●●●
●●●●
●
●●

●

●●●●
●
●●
●●●●
●●
●●
●●●●●
●
●●●
●●
●
●●●
●●●
●
●
●
●
●●●●
●●
●●
●●
●

●
●●
●
●●●●●●
●●
●
●●
●●
●
●
●
●
●●●●●●●
●●
●

●●●●●●●●●●
●●●●

●

●
●●●
●●
●●●
●
●●●
●
●●
●●
●●●●●●●
●●
●●
●●●●●●●
●●●●●●
●
●●●●●●
●●●●●
●●
●●●
●●●●●●●
●

●●●
●
●●●●●●●●
●●●●●●●●

●

●
●

●●●
●●
●●●

●●●
●●●●
●
●●●
●
●●●●●●●●

●

●●●●
●
●
●●●
●
●

●●●
●●●●●

●●●
●
●●
●
●●●●
●●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●
●●
●●
●
●

●●●
●●●●

●
●●●●●●

●

●●●●
●●●
●●
●
●●
●●●●
●
●●●

●
●
●●●●
●
●●
●●●●●
●●●●●●●●
●●●●●
●
●

●
●
●●●
●●●
●
●
●●●●●●●●

●

●●●
●●●●●●●
●
●

●

●
●
●

●●
●●
●
●●●●
●
●
●●
●
●
●
●●
●●●
●●●●●
●●●●●
●●
●
●
●●●●
●●●●●
●●
●●●●
●
●
●●●●
●●●●●
●●●●●●
●●●

●●
●●
●●●

●

●
●
●●●
●
●●●
●
●●●
●●●●
●
●●●●●
●

●●●●●●●
●●
●
●
●
●
●

●

●●●●●●
●●
●
●
●●●●●●●

●
●●●●●●●●●●●●●●●
●
●●
●
●
●
●●●●

●

●●●●●●●
●
●●●●●●
●●●
●
●●●●
●
●
●
●
●

●●
●●●
●

●
●●
●●

●

●●
●
●●
●
●●●
●●●
●

●●●●●
●●
●
●
●●
●

●
●
●
●●●

●

●
●●●
●●

●

●●●●
●●●●●

●

●●
●
●●●●
●
●●●
●●●●

●
●●

●

●
●●
●
●●●●●●
●
●

●

●
●●●
●
●●
●●
●
●●●
●●
●●
●●
●
●
●

●

●

●
●
●
●
●●●

●

●●●●●
●●
●●●

●

●

●

●●
●
●●
●●

●

●●
●
●●●
●●
●
●

●

●●●
●●●●●●●●
●●●
●
●●●

●●
●●

●
●●
●
●

●●
●
●
●●
●
●
●
●●●●●

●
●
●●●●●

●
●●
●●●●
●
●●
●
●

●●●
●●●
●
●●
●●

●

●●●●●●●
●●
●

●

●●

●
●●

●

●
●
●

●●
●
●
●●●●
●●

●

●●
●
●
●
●

●

●●
●
●●●●●

●

●●
●●●●●●●
●
●
●
●
●
●●
●●
●
●
●

●●
●●●●●
●
●●●
●
●●
●
●●●●●●
●●

●

●●●●
●
●●●●●●
●
●
●●
●●●●●●●
●
●●
●●●●●●●●●●●●●
●
●●
●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●
●●
●
●●●●●●
●
●●●
●●●●●●

●●
●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●
●
●
●●

●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●
●
●●●●●
●●●●
●
●●
●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●
●●●
●
●●●●●●
●●●●●●●●●●
●
●●
●●
●●●
●
●●●●●
●●●●●●
●
●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●
●
●●
●
●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●
●
●
●●●●●

●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●
●●●●●●
●
●●●●
●
●
●●●●●●●●●●●

●
●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●
●
●●●●
●●●●●●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●
●
●●●●●●●●●
●
●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●
●●●●●●●●●●●●●
●
●●
●
●●
●
●●●●●●●●●●●●
●●●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●

<
 0

.1
0.

5
1

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

<
 0

.1
0.

2
0.

3

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II

●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●●●●

●●●
●●
●●●
●●
●●●●●
●
●●
●
●●●●●●●●●●●● ●●●●●●●●

●
●●●●●●●
●
●●●
●●●●●●●●●●●●●●●● ●●●●

●
●
●●●●●●●●●●●●●

●●●●●●
●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●
●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●
●●●●●●●●●●
●●●●
●
●
●
●●●●
●●●●●●●
●●●●
●●●
●
●
●●●
●●●●●●●

●
●●●

●●●
●
●
●●●
●
●●
●●●●●●
●●●●●●
●●●
●
●●●●

●

●
●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●
●●●●
●
●●●●
●
●
●●●●
●●
●
●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●
●
●●●●●●●
●●●●
●
●●●●●●●
●
●
●
●●● ●

●●
●●●
●
●
●●●●●●●
●●●●●●
●
●●

●
●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●

●●●
●

●

●●●
●●
●
●
●●
●
●●●●●
●●●●●
●
●●●●●●
●
●●
●
●

●
●●●
●
●●●
●●●●●●●●●●●●●●●
●●●
●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

2.
0

5.
0

●
●●●●●●●
●●●●
●
●
●
●●
●●●
●●●
●
●●●
●
●

●

●●
●
●●
●
●
●
●
●
●●
●●●●
●●●
●●●
●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●
●●●

●
●●●●●●
●●●
●
●●●●●●
●
●●●
●●

●

●
●
●●

●●

●
●●●●

●

●●●

●●
●
●

●●

●

●
●
●●
●
●●●●

●

●
●
●
●●●
●●
●●
●●
●●●
●
●●
●
●
●●●●●●●●●●●●●
●●●
●●●●
●●●●
●●
●●
●
●●●●●

●

●●●
●●●●
●
●
●●●

●

●●●●●
●
●●●
●●
●
●
●●
●●●
●
●●●●
●●
●
●
●●
●●
●●●●
●
●●
●
●
●
●●●●
●
●●●
●

●●

●●
●
●
●
●●●●●●●●
●
●●

●●
●●

●
●
●●
●●
●●
●
●●
●●
●●
●
●●

●

●
●
●
●●
●●●
●

●

●

●●●
●●●

●
●●●
●
●●
●●●●●●●●

●
●
●
●

●
●●
●
●●●●●
●
●

●

●●●●

●
●
●●
●

●

●
●●
●
●●●
●●●●
●●
●
●●
●
●
●
●
●
●●
●●●●

●●●
●●●
●
●●●

●
●●
●
●
●●
●
●
●●
●●●

●
●●●

●

●
●●
●●

●
●

●

●

●
●
●●
●●
●
●

●
●●●

●

●

●
●●
●●
●
●
●

●

●●
●

●
●

●●●
●
●●
●●●
●●

●●●●●
●
●

●
●
●●●

●

●

●
●●●●●
●

●●
●●

●
●●●
●●
●●●●●

●

●●
●
●●
●●●●●●●●●●●●

●
●●●●
●
●
●●●●
●
●
●●●
●
●●●
●●
●
●●
●
●●●●
●
●●
●●
●
●●●●●●●
●●●●●
●●
●●
●
●●●

●
●●
●
●●
●●●●●●●
●●●●●
●
●●
●
●
●
●
●

●

●●●
●●
●●

●

●

●

●●
●
●
●●

●

●
●

●
●●
●
●●●●

●
●●●●

●●●
●●●●●●●

●

●●●●
●●
●●●

●●●●●

●●●
●●●

●●
●●
●
●
●
●●
●
●●●

●

●
●
●
●●●●●
●
●●
●
●
●
●
●
●
●

●
●●
●

●●
●

●
●●●
●●
●●●

●

●●

●●●●
●

●●
●
●●●
●●●●
●
●
●
●
●●●

●

●
●●
●
●
●
●
●●●●
●
●
●●●

●●
●●●●●●●●
●

●●●●
●●
●●●●
●●
●
●●
●
●

●●●●

●

●●●●●●
●
●●●●●
●●
●●

●●●
●
●

●
●●●
●●●●
●
●
●●
●
●
●●●●●●
●●●●
●
●●
●●
●
●●
●●
●
●
●●●
●●
●●●●
●●●
●●●
●●
●
●●●
●●
●●●
●●
●
●●
●●●●●
●●
●●●
●●
●

●

●

●
●●●●●●●●●

●●
●●●
●
●●●●●●●●
●
●●
●
●
●●

●

●
●●●●
●●
●

●●
●●
●●
●●●
●●
●
●●
●●
●●
●

●
●●●●
●●●●●●●
●●
●●●●●●●●
●●●●●●●●●
●
●●
●●
●●●
●
●●●●
●●●●●●
●
●●●●●
●
●●
●
●
●
●

●
●●●
●

●●

●●

●
●
●●●

●

●●
●

●

●

●●

●

●
●●

●

●
●
●
●

●

●
●
●●●

●

●

●●●
●●●
●●
●
●
●
●
●●
●●
●
●
●●●●
●●●●●●●●●●●
●
●
●●●●●●
●
●
●
●●●●

●
●
●
●●●
●●●
●
●●●

●

●●●
●
●
●
●
●
●●
●●●●●●
●●●●●
●●
●
●●●
●
●●
●
●●
●●
●●●
●●
●
●●●●●●
●●●●
●
●
●
●
●●
●
●●●
●
●

●

●

●
●●
●
●
●●●
●
●
●
●●
●●
●●

●

●●●
●
●

●

●
●
●●●●

●●●
●
●
●●

●●●
●
●
●●
●

●

●●

●

●
●
●
●
●
●
●
●
●●
●
●●
●●

●●

●

●●●
●
●
●
●

●●
●●
●

●

●
●
●●●●●●
●●●
●
●●●●
●●
●●●●●
●
●
●●
●
●●●
●●
●
●●
●●

●
●●
●●
●

●
●●●

●
●●

●

●●
●●●●
●●●
●

●●
●
●●
●●
●●●
●●
●
●

●

●

●●●

●

●
●
●●●

●
●
●

●

●
●●
●
●

●

●
●●●●

●

●●●
●

●
●●
●●●●●●
●

●●
●●●●
●
●
●●●●
●
●●
●●
●●
●●
●●●

●

●●

●●●
●●

●
●
●●●●

●●●●
●●
●●●●●
●●●
●●●
●
●●
●●
●
●

●●●
●
●●

●
●●
●
●
●

●

●●
●
●
●●
●

●●●●●
●●
●
●
●
●
●
●●●●●●●●
●
●

●●●
●
●●
●
●●●
●●
●●●
●
●
●
●●●
●
●●●●
●
●
●

●
●

●●
●

●
●●
●●
●

●

●●●
●
●
●●●
●

●●
●

●●●

●●
●●
●
●●

●

●●
●
●
●●
●
●●●●
●●●●
●
●●●●●
●
●
●
●
●
●
●

●●
●●●●
●●
●
●●
●

●

●
●●
●
●
●●
●
●
●●●●
●●
●
●
●
●●●

●
●

●

●●
●
●
●●●●
●
●●
●●●●
●
●
●

●●

●●●●●

●●●●●

●
●●
●
●
●
●

●
●
●
●
●
●
●●●
●●●●
●
●●●●
●●●●●●●●●●
●
●●

●

●●●●●●
●●●●
●

●

●●●●●●●●

●

●●●●
●
●
●●
●
●●●●●●
●
●

●

●

●

●●●
●●
●
●●
●●
●●●●●
●●
●●●
●●●●●●●●●
●
●●●●●
●●
●●
●●●
●
●

●●
●●
●●●●●
●●●●●●●●●
●●
●●
●
●
●
●
●
●
●●●●
●●●
●●●●●●●

●

●

●●●●●●●●●●
●
●●● ●

●
●●
●

●
●
●●●●●
●
●
●
●●
●●●
●●
●●
●●
●

●

●
●
●
●
●●●●●●
●
●
●
●●●●●●●●
●
●
●
●●●●●●
●
●●●●●●

●●●

●
●●●●●●
●
●
●●●●●●
●●●●

●
●
●●
●
●●●
●●●●●●
●
●●
●●●
●
●
●
●●●
●
●●●●●●●●●●●●
●
●●●●●●●

●
●
●●●●

●

●
●●
●●●
●
●●
●●
●●
●●●

●
●

●●
●●
●
●●

●
●
●●●●●
●
●
●●
●●
●

●

●
●●●●
●

●●
●
●●●
●
●●●●
●●
●●●
●
●
●●●●●
●

●
●●●

●

●●●●
●●●
●
●●●
●
●●
●
●

●●
●

●●
●●
●●
●●●●
●●
●●●
●●

●●

●
●●
●●
●●●●●

●

●●
●
●●
●
●
●
●●●●●●●
●●
●●
●
●●
●
●
●

●

●

●

●●●●
●●●●
●
●●

●
●●●
●●●●
●●
●
●●●●

●
●●
●
●●●
●●●
●

●●
●
●●●●
●●●●●
●
●●●

●
●●

●

●●●●●●●●●●
●●●●●●●
●●●
●
●●
●
●
●
●
●
●
●●●
●●
●
●●●●●
●
●
●
●
●●●●
●
●●●●●
●●
●●
●
●●●
●●
●●●●●●
●●●●
●
●
●
●
●
●●

●●●●●●●
●
●●●●●
●●●●●
●●●
●
●
●
●●●●●●●
●
●
●●
●●●●

●●
●●●●

●
●●●
●●●●●

●

●

●

●●●●

●

●●
●
●●●●●●
●
●●
●
●●●
●●
●

●
●●

●

●

●
●●●

●
●
●●●●●●

●

●
●
●●●●
●
●●
●●●●●●
●
●
●●●
●●
●●
●
●●●
●●

●●●
●●
●

●

●
●
●
●●●●
●●●●
●
●●●
●
●
●
●●
●
●●
●
●●●●
●●●●●●●●●●
●
●●●
●
●
●●
●●●●
●
●
●●●●
●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●
●
●●●
●●●●●●
●
●●
●
●●
●
●
●

●●●

●

●●●●●●●●●●●●
●●●●

●●●●●●●●

●

●
●
●●
●
●●

●●

●●
●●●
●
●
●
●
●●
●
●●●

●

●●
●●●●●
●
●●●●●
●●

●

●

●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●
●●●●
●
●
●●●
●●●
●●
●●●●
●
●●●●
●
●●●
●
●
●
●

●●
●
●
●●●●●●

●

●●●●
●
●●

●

●
●
●●●●●●●●●●
●●
●●
●
●

●●
●
●
●
●●●
●●●●●●
●
●
●●
●
●●●●●●●●●●
●●
●●
●●●●
●●
●●●●
●
●●●●●●
●●●●●●
●
●●●●●●●●●●
●●
●
●●
●
●

●
●
●●
●
●●
●
●
●
●●●●●●
●
●

●
●●
●

●

●
●
●●●●●●●●●●●●
●●
●●●
●●●●●●●

●
●●
●
●●●●
●●
●●

●

●●●●●●●●●●

●
●
●
●
●
●
●●
●

●●●●●

●

●
●●●
●●●
●
●●

●

●●●●
●●●

●
●
●●

●

●

●●

●●

●
●
●●●●●

●
●
●
●●
●●
●●
●●
●

●●●
●●●
●
●
●●
●
●●
●●
●●●●●
●
●●
●●
●●●●●●
●
●

●

●●●

●

●●●●
●
●●●
●

●●

●
●
●
●
●
●
●●
●
●
●
●
●●●●●

●
●●
●

●●
●
●●●●●
●●●●
●●●
●●
●●
●
●●●●●●●●●●
●●
●●●
●
●●●●●●●●●●●
●
●●
●●

●●●●●
●
●●●●●●●●●●●●●

●

●
●●● ●

●●
●●●●●●●
●
●●●●●●●●
●●●●●●
●
●●●
●
●
●●●●●●●
●●
●
●●●●●
●

●
●
●
●
●●●
●
●●●●●

●

●●●
●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●

●

●●●●●
●●
●
●●●●●●●
●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●
●●●●●●
●●
●
●●●●●●
●
●
●●●
●●●●●
●
●
●●●●
●
●●●●
●●●●●
●●●●●
●
●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●
●
●●●●●

●

●●
●
●●●●●●●●●●●●
●●●
●
●●●
●●●●●●●●●●●●●●●
●●●●●
●●
●●●●●●●●
●
●●
●●●●●
●●●●
●●
●●●
●●●●
●
●●●●●
●●
●●●●
●
●●●
●
●●●●●
●
●●●●●
●●
●●●
●●●●●●
●
●●●●●
●
●
●●●●●
●●
●●●●
●●●
●●●
●●●●
●
●

●
●●
●
●●
●●
●●●●●●●●●
●●●●●●●●
●●
●
●●
●
●●●●
●●●●
●
●●●●●●●
●
●●●
●
●●●●
●●●

●

●●●●
●
●●●●●
●
●●●
●
●
●
●●●●●●●●●
●●●●●●●
●
●●●●●●
●●●●●●●●
●
●
●
●●●●●
●
●
●
●●●●●●●●●●
●●●●●●●●●
●
●
●●
●●

●

●
●●●

<
 0

.1
0.

5
2

5

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III

●●●●●●●
●
●●●
● ●●●●●

●
●●●●●
●

●●●●

●●●●
●
●●
●●
●
●●●●●

●
●●●●●●●
●
●●
●
●
●

●●●●●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

1
5

20
10

0 ●

●
●

●
●●●●●●
●

●●●●●●●
●
●●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
10

20

●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

IV

●●● ●●●●

●

●●●●

●
●●●●●●
●●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
20

10
0

50
0 ●

●
●
●●

●

●●

●
●

●●●●

●

●

●●
●●
●●
●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

10
20

50

●●
●

●●

●● ●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
20

10
0

10
00

V

●

●●●

●●

●●●●

●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
10

0
50

0

●●● ●

●

●

●
●●●●

●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
40

80

●●●

●
●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

50
20

0
10

00

Figure 12.8.: Runtime in seconds of the heuristics without the time spent in PruneSteinerN-
odes per call, even if no solution was found.

114

EVALUATION OF HEURISTICS: RUNTIME (INCLUDING PRUNING) [S]

Fat Tree IGen Torus

I

●

●

●
●●●
●●
●●●

●
●●
●

●

●●●●

●

●●●●

●●

●

●
●

●
●●●

●

●

●

●●

●●●

●●

●

●
●●●
●

●
●

●●

●●●

●●
●
●

●●

●

●●
●●●
●●●●●

●

●●●●

●
●
●●●●
●●●●
●

●●

●●
●●●
●

●
●
●●
●●
●
●
●

●

●

●
●
●

●
●

●

●
●

●
●●
●

●

●
●●
●●●●●
●●
●

●
●
●

●
●

●

●

●●

●●

●●●

●
●

●

●

●

●
●●
●
●
●

●●●
●
●
●●
●
●●
●
●●●

●●
●

●
●●●

●
●
●
●●
●

●

●●
●
●
●●
●
●

●●●●
●●●●
●
●

●●
●
●

●

●

●●●●●●

●
●

●

●
●●●
●
●
●●
●
●

●●

●
●●
●
●
●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●●

●●

●

●●
●
●
●
●

●

●

●●
●
●

●●
●●
●
●
●

●

●
●●●

●
●

●

●

●●
●●●
●
●●
●●●
●●
●●

●

●
●

●

●
●

●
●●●●●
●●
●●
●

●●

●

●

●●

●
●
●●
●●
●

●●
●

●

●●●
●
●●
●

●

●
●
●●●●
●
●

●●
●
●●●●
●●●

●
●

●
●●
●
●
●

●●

●
●

●

●
●●

●●
●

●
●●
●●
●
●
●

●

●

●
●●

●

●
●

●

●
●

●

●
●
●●
●
●●
●
●

●

●●

●●●●●●

●

●
●●
●
●

●●
●
●

●

●
●

●
●●

●
●

●●

●

●
●
●●●●
●
●●
●
●●●

●●

●
●

●

●
●

●●
●
●
●
●●

●
●

●
●
●
●

●●●●●

●

●●
●●
●
●
●●●●●

●

●
●
●

●

●●
●●
●●
●
●●●
●●●●●●●●●
●
●
●●●●●
●
●●
●●

●

●

●●
●
●●●●
●●●●●●

●

●●
●

●
●

●

●

●

●

●●●
●●●

●
●
●
●●

●
●

●

●
●●
●

●
●
●

●

●
●

●●
●

●

●
●●
●●●●●●
●
●
●
●
●●
●

●

●
●

●●●
●
●●
●●●
●
●

●●●

●

●●●●
●●
●

●
●
●
●●●●●
●●●●
●●
●●

●●

●
●

●
●●

●●●
●●

●

●●

●

●

●
●●
●
●●●

●●
●

●●

●●

●

●●●●
●●
●●

●
●●
●●

●●●
●●●●●

●
●
●●
●●
●
●

●

●●●

●

●●
●●
●

●

●●
●●●●●●●

●
●●●●●●●●

●

●
●
●●●
●

●

●

●

●●●
●●

●

●
●

●

●
●●●●
●●
●●
●
●●●

●

●
●
●

●●

●
●
●
●
●
●
●
●●●●

●

●
●
●●●●

●

●●●●
●●●

●
●

●

●

●

●

●
●
●

●

●
●●
●
●

●

●
●

●

●
●●
●

●

●

●

●●
●●
●
●●
●
●
●●●●●●
●
●

●●
●●
●
●
●
●●●●

●
●
●

●●
●●●
●
●●●●●

●

●●●●
●
●●
●●
●
●●
●●

●●
●
●
●

●

●●
●

●

●
●●
●
●
●●●
●●●●

●
●●●

●

●●●●●
●

●
●
●●

●
●
●●●
●
●●●

●●

●
●●

●
●●●●●

●

●●
●●●●
●
●●
●
●●
●●●●
●●●
●●

●

●●

●●●

●●
●●
●●
●
●●
●●
●●●●●●●●
●
●●●
●●●
●●
●●●
●●
●
●●●
●
●●
●●
●
●●●●
●
●●●●
●
●●
●●
●
●●●●●
●

●●●
●
●
●●

●

●●●●●

●

●●
●●●
●
●●
●
●●●●
●
●●●●
●●●●●●●●●●
●
●

●

●

●●●
●●●●●●●●●●
●
●
●
●
●●
●
●●
●●
●●●●
●
●●●
●
●
●
●●
●
●
●
●

●

●
●

●●
●
●

●
●●●

●

●
●●

●
●
●
●
●
●

●●●
●●●●
●●●●
●●●●●
●
●
●●
●
●
●
●

●
●●

●
●●
●●
●●

●
●

●●
●●●●
●●
●●●
●
●

●
●
●●
●
●●●●

●

●
●●●●●
●●
●●

●
●
●
●●●
●
●●
●●
●●●
●
●●●
●●●
●●

●●
●
●

●

●
●●
●●

●
●●●●●●

●

●
●
●
●●

●

●●●
●●

●

●
●
●●●●

●

●
●
●●

●

●●
●
●●●
●

●
●
●
●
●

●
●

●

●

●

●

●●●
●

●●●●●●●●●

●●

●●●●

●

●
●
●●

●

●

●

●
●

●

●●●
●
●
●

●

●

●●●●●

●
●
●
●
●

●
●

●

●
●

●●●●
●
●

●
●
●
●●

●

●
●●●●●●

●

●

●●
●●
●●
●
●●

●●
●
●
●

●
●

●●●●
●●
●●
●

●
●●

●
●

●●
●

●

●●

●
●
●

●●

●
●●●●
●
●●●
●
●●●●
●
●●

●
●
●●●●●
●●●●

●

●

●
●

●●
●
●●

●
●
●

●●

●

●
●
●●●

●
●
●

●
●
●●●●●
●
●
●●

●
●●●
●
●

●
●●
●
●●

●●●●
●
●

●

●
●
●●●
●
●
●●
●
●

●●●●
●●
●
●

●

●●
●●●●●●●
●
●●●

●
●

●●
●●

●

●
●●
●●
●●
●
●●
●
●
●●●

●●

●

●

●●
●●

●
●
●
●●

●●

●

●

●●
●
●●●●
●
●

●

●
●

●
●●●●
●
●●●
●●
●

●

●

●

●

●

●
●
●
●
●

●
●

●●●
●

●

●
●●

●

●

●

●●●●

●

●

●●
●●

●
●
●
●
●

●

●
●

●

●

●
●●

●
●●

●

●
●●●
●

●
●
●

●
●
●
●

●●
●

●●
●

●

●

●

●●
●
●●●

●

●

●

●●

●

●

●●

●
●●

●

●●

●
●●
●

●

●
●

●
●

●

●
●●
●

●

●●●
●●

●

●
●●●

●

●
●●

●

●
●

●●●
●

●
●●●

●●

●
●
●

●

●
●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●●●●●●

●

●●
●●
●

●

●

●

●
●

●
●

●
●●

●
●
●
●●
●
●●

●

●
●

●

●

●

●

●●
●
●

●●
●●
●

●

●

●
●
●
●
●
●●

●●●●

●
●●

●
●●

●

●
●
●
●

●

●

●
●●

●
●
●
●●

●

●●●
●●●
●

●

●

●
●

●●

●

●
●

●●
●●●●●

●

●

●

●●●●
●

●

●

●
●

●

●●
●

●
●

●

●●●●

●●
●
●●●●●
●

●

●
●●●
●

●

●
●●●
●
●
●●●●●●●●●●
●
●●●

●
●●
●●
●
●

●●

●
●
●
●
●
●

●
●
●●●
●

●●
●
●●
●

●●

●
●●
●
●

●

●●●

●
●●●
●●●
●
●●

●
●●

●

●
●●●
●●
●
●●
●●

●●●

●●
●●

●

●●●
●
●
●●
●●
●
●●●

●●
●●
●
●
●

●

●●

●
●
●

●
●
●
●●
●
●●

●●

●

●

●
●●
●●●●

●

●●●●
●
●●

●

●●●

●
●●
●

●●

●

●
●
●●
●●●

●

●●●

●

●

●
●
●
●●
●●
●●●
●●

●

●
●●
●
●
●

●

●
●
●●●
●●
●

●
●

●

●

●
●●●●
●●●●●●●●●●●
●●
●●

●
●

●

●

●

●●
●●
●●
●
●
●
●
●
●●
●

●
●
●

●●
●
●

●
●
●
●

●

●●

●●
●

●●

●
●
●
●
●
●
●●

●●
●

●●●

●●

●

●●
●
●

●

●

●●

●
●●
●●
●
●
●●●

●

●

●●
●

●●
●●
●
●

●

●
●●●●
●
●
●
●
●

●

●●
●●
●

●●●
●

●●
●
●
●●
●
●●

●
●●●●●●

●

●
●

●

●

●
●
●●
●

●
●

●

●●
●●
●●
●
●

●

●

●
●

●
●

●

●
●

●
●

●
●
●●
●
●

●

●●●●
●●●

●

●
●
●●
●
●

●●●

●

●

●
●●●

●

●●
●
●

●●
●

●●
●
●
●
●
●
●●●

●
●
●●

●

●
●●

●
●

●
●
●

●●●
●

●

●
●
●

●
●
●

●●
●●
●
●

●●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●

●

●●●
●
●

●

●
●
●●
●

●

●
●
●
●
●●
●
●

●●●
●●●●●
●
●●

●
●

●
●
●
●●●●
●

●
●●
●

●●
●
●●
●●
●

●
●

●
●
●

●

●●
●

●●

●
●
●●●
●
●

●
●
●

●●
●

●●●●●●

●

●

●
●

●

●●
●●

●
●
●
●

●
●●●●●●●
●
●

●

●
●
●●
●●
●

●
●
●●
●●

●

●
●

●

●
●●●
●
●
●
●

●

●

●●
●●●●
●●
●

●

●

●
●●●
●●●
●●●
●

●

●
●●

●

●●●
●
●
●

●●
●●●

●

●
●●
●●
●
●

●

●●

●●
●
●●●

●

●●●
●

●●●

●
●
●●
●●
●●
●●

●
●
●

●

●

●

●●
●
●
●●●

●●
●
●

●

●
●●
●
●

●

●●●

●

●●

●
●
●

●

●●
●

●●

●

●●

●

●●
●

●●
●●●●

●

●
●●
●
●

●●
●●

●
●
●●
●●●●●●●●●

●
●

●

●
●

●

●●●●●
●

●
●
●
●●
●●●

●
●
●
●
●

●

●

●
●

●
●

●●
●

●●

●
●

●

●●●
●
●

●
●
●●●

●●
●
●●●
●●●

●

●●

●●
●●
●●
●●
●
●

●●●●●

●

●

●●
●●●●●
●
●

●●●

●●

●●
●●
●
●●
●

●
●●●
●
●
●
●
●
●●●●●
●

●
●●

●

●

●
●

●
●
●
●●
●
●

●
●
●●

●●●

●

●●
●●●
●
●

●

●

●●

●

●

●
●
●●●
●

●

●
●●●

●
●
●

●
●●●
●
●●

●

●

●
●
●
●

●
●
●●

●

●●●
●●
●
●

●
●
●●●
●●●●●●●●●●●
●
●
●●●
●
●●●●
●
●

●

●●

●
●
●

●●

●●
●
●
●
●●●●●
●●●
●

●
●●●
●
●●●●
●●●
●

●
●
●●
●
●●●●
●●●

●

●
●●●
●●●

●

●●
●
●
●
●
●●
●

●
●

●

●
●
●
●

●
●

●●
●
●●

●

●
●

●

●●●

●●

●●

●
●

●●●●●
●●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●

●
●
●
●
●
●●●●
●
●●●
●●

●

●
●

●●

●

●●
●

●
●●
●
●
●

●

●●●●

●

●
●●●●
●●
●
●
●
●

●
●
●●
●

●●●
●
●
●

●●
●

●●

●
●

●
●●
●
●●
●●
●
●●

●●●●●

●
●●
●
●

●

●
●●
●
●
●●

●
●
●●
●

●
●●●
●
●●●●
●●●
●
●●

●

●
●

●

●
●●
●

●

●
●
●
●
●
●
●
●
●●●●
●
●

●●
●●

●●
●●●●
●
●
●
●
●●
●●
●●
●●
●

●
●●●●●
●●
●
●
●●●●●
●
●●●
●
●●
●
●●●●●

●●
●●●●●
●
●●●
●●●
●●●
●●●●
●
●●
●

●

●●●●
●●●●
●●●
●●
●
●●
●
●

●

●
●

●

●●●
●●
●●●●●●●

●

●●
●●
●●
●●
●
●
●

●●
●●
●●
●●
●

●
●●
●●●●

●
●●●
●●●
●

●

●
●

●●
●●●
●●●●●
●

●●

●●

●●●
●
●●●●●

●

●
●●
●●●●
●
●
●●

●

●

●●●●●●●
●
●●
●
●
●●●

●

●●

●
●

●
●
●
●

●

●

●
●

●
●
●

●●

●
●●●●●

●

●

●

●

●●●

●●●
●●●
●
●
●

●●●
●●
●●

●

●●●
●
●●●
●

●

●
●●●
●

●
●
●
●
●
●●●●

●

●

●●●●

●
●
●

●

●
●
●●
●
●
●●●

●

●●
●

●
●
●●●

●

●
●
●●●
●●●●
●●●●
●●
●●

●
●●●
●●●
●

●●
●●●

●
●●
●●
●
●●●

●●

●●
●●

●

●
●
●
●
●

●

●●
●
●●

●●

●
●●

●●

●●●
●
●

●
●●
●
●●
●

●

●
●●
●●

●

●●

●
●
●

●
●●
●

●

●●

●
●
●●

●●

●

●●
●

●

●

●●

●●

●

●

●

●
●

●
●●●●
●●

●

●●

●●●
●
●

●●
●
●

●

●
●
●●
●
●

●

●
●

●

●●●●
●

●●
●

●

●●

●●

●

●●
●
●●
●

●

●
●●
●
●●●
●
●

●
●
●
●●
●

●
●●
●

●
●
●●
●●

●

●
●●
●
●●

●●●
●

●
●
●
●
●●●
●
●●

●

●●

●●

●
●●●

●

●
●
●●●

●

●●●
●

●

●
●●

●
●●

●●

●
●
●
●
●●

●

●●●

●

●
●●

●●

●
●
●

●

●●
●
●●
●
●
●

●

●

●●
●
●
●●●●

●

●
●
●●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●●
●●
●

●●
●

●
●

●

●

●
●
●

●●

●
●
●
●

●●●●●●

●

●
●●
●
●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●●
●●

●

●

●

●●

●

●

●

●

●●●
●
●
●
●●●

●

●
●
●

●●●
●

●●

●
●●

●

●
●

●●
●●●
●
●

●

●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●●
●●

●
●
●●

●
●●
●

●

●●

●

●

●

●

●●
●
●●

●

●●●

●

●●

●
●●
●

●

●●
●

●

●●●
●
●●●

●

●

●

●●●
●●

●

●●
●
●
●●
●●●

●●

●●
●
●

●
●

●
●
●
●
●
●

●
●
●●●

●●●●●
●

●

●●

●●
●

●

●

●
●

●

●

●●●●
●

●

●
●

●●●

●

●

●

●

●

●

●

●●●●
●
●

●

●

●●●
●
●
●

●●●
●●●●●●
●
●

●
●

●●

●

●
●●
●
●
●
●

●

●
●
●●
●
●●

●
●
●

●
●
●
●●●
●
●
●

●
●

●
●
●●
●
●
●
●

●
●●●
●●●
●
●

●●
●●●
●
●

●●

●

●●

●

●●●

●

●●●●●●
●

●●

●

●●
●
●
●

●
●
●●●●

●

●
●●●
●●
●

●
●
●●
●
●●
●
●

●
●●
●

●

●

●●
●

●
●
●

●
●
●
●●●
●●

●
●

●

●●●

●

●
●
●

●●

●●●

●

●
●
●●
●
●●
●
●●
●
●●●

●

●●

●●

●
●●

●
●

●
●

●●

●
●
●
●●●●●
●●●
●

●

●

●
●

●

●

●

●
●●●●
●●

●

●
●●
●●●●
●

●●
●●

●

●
●●

●
●

●
●

●
●●
●●●●●●
●●

●
●
●●
●
●
●●
●

●
●●●

●●
●
●
●
●●

● ●●

●

●●
●
●

●●

●
●●●●●●

●

●●

●

●

●●

●●

●●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●●
●●●

●
●●

●
●

●

●
●●

●

●

●●

●

●
●
●●
●
●

●
●
●
●●●●
●

●
●●●
●●
●●
●●

●

●●
●
●●

●
●

●●
●
●
●

●

●

●
●●

●
●
●
●

●●
●

●
●
●

●
●

●
●

●

●

●●

●●

●●

●

●
●●
●
●●●●●

●
●●●
●

●

●

●●●●●
●

●

●

●

●

●

●
●●●

●

●●
●●
●

●

●
●●

●●
●●●●●●
●

●

●●

●

●●
●●
●
●
●

●●

●●●
●
●●●
●
●

●●

●●●
●
●●
●
●●●

●

●●
●
●●

●
●
●

●

●●
●●●

●
●●

●

●

●
●●
●●

●
●

●
●
●

●●●
●

●

●
●●

●

●
●
●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●●
●●●●
●
●
●●

●●
●

●
●

●●
●

●●
●
●●●●●●

●

●
●●

●

●

●

●
●
●
●
●
●

●

●●●

●
●

●●

●
●●●
●

●●●●

●
●

●●
●
●●

●
●●●

●
●●●

●

●

●
●●●
●●
●

●●

●
●●
●●●●
●

●●
●●●

●

●
●
●●
●
●

●●

●
●
●
●●

●
●
●

●

●

●

●

●
●
●

●

●

●

●●
●
●●
●
●
●
●●

●
●

●
●●●
●

●

●
●

●

●
●
●

●

●
●
●
●
●
●

●

●
●●
●●●●

●

●●

●

●●
●
●
●

●

●●
●●
●●●●

●
●
●
●

●

●

●

●

●●
●

●●

●
●
●
●●●
●●
●
●
●

●

●

●●●

●●

●
●

●
●

●
●●
●
●

●
●
●
●

●●
●●

●●●●
●●

●●●●
●
●●●●●●●
●●●
●
●
●●●●

●

●

●●
●

●●●●

●●
●
●●
●
●●●

●

●
●●

●●●●●
●

●

●

●

●
●
●●●
●
●●●●●●●
●●●●●●●
●
●
●
●
●
●

●
●●●
●

●

●
●●
●

●
●

●

●
●
●
●
●●●
●
●●
●●●●
●
●●●●

●

●

●
●

●

●
●

●●

●●
●●●
●●

●

●●

●
●●
●●●●
●●

●

●●

●●

●
●●●

●

●●
●
●●●●●

●

●

●

●●
●●
●

●
●
●●●●●●
●●
●

●

●

●
●
●●●●●●

●

●
●
●
●
●●●

●

●
●
●
●●●●
●
●
●

●●
●●●
●
●

●

●
●
●●●●
●
●
●●
●

●

●●●

●

●●
●
●
●●●●●●●●●●●●
●

●●●●●●●
●●
●
●
●●●●●●
●●
●
●
●

●●●●●●●●●
●●●●

●●
●
●●
●●●●●
●●●
●
●●
●●
●●
●●●●●
●

●●●
●●

●

●
●
●
●●●●
●●●

●

●

●
●
●
●●

●

●●●●●
●
●●●

●
●

●●
●●●

●
●
●●●●

●

●●●●

●

●●
●●●●
●●●●●●●●●
●
●●

●

●●

●●

●●
●
●
●
●
●

●
●●●●●●●

●
●

●

●

●
●●
●●
●
●●
●●●●

●

●●
●
●●
●

●

●●

●●
●
●
●
●
●
●

●
●
●●
●
●

●●●●
●●
●

●
●
●
●●●

●
●●

●

●●●●●
●
●

●●●●●●

●

●
●●●●●
●●

●

●●●
●
●
●
●●●
●●
●●

●
●●
●●●
●●●●●●●

●
●
●●
●
●●
●
●
●

●

●
●●●●●
●
●
●●●●

●

●
●
●

●●
●●
●
●

●
●●

●

●
●●●

●
●
●
●●●●●
●
●●
●●●●
●●●●
●●
●
●●●

●

●●●
●
●
●●●●●
●
●●●
●
●●
●●
●

●
●●
●●●●
●
●●

●

●

●
●●
●●
●●
●
●●●
●

●
●●
●

●
●
●●●
●●●●●
●
●

●●
●●●●●●

●

●
●
●●●

●

●

●
●●●●●●
●

●
●

●

●
●
●
●●
●
●
●
●
●●
●●●
●
●●●●
●●●
●
●
●
●

●
●●

●

●●●●
●
●●●●
●
●●

●
●●●

●●●●●
●●●●●●
●
●
●●
●
●●●

●●
●

●

●●●●●●
●●●●
●
●
●
●●

●
●
●
●

●

●

●
●●
●
●●●

●●

●
●●●●

●

●
●
●
●

●
●

●

●●

●
●●
●

●

●

●

●●
●

●

●

●
●
●
●●●
●
●
●
●
●

●

●

●

●

●

●
●●
●
●
●
●●●●●●●●●
●
●●
●●●
●
●●
●
●

●●
●●●●

●

●
●

●●
●●

●

●

●
●●
●

●

●
●●●
●
●●●
●
●
●

●

●

●
●
●

●
●●

●

●●●
●
●
●

●
●●
●●
●●

●

●
●

●
●●
●●

●

●
●

●

●●
●●
●●
●
●
●●●

●
●

●●●
●●
●●●●

●

●

●

●
●
●

●
●
●
●
●

●

●
●●
●●
●
●●
●
●
●
●●

●

●
●

●

●●
●
●●●

●

●
●●
●

●

●

●●
●

●●

●

●
●
●●
●

●

●●
●●●●●●
●●
●
●●●
●●

●●●
●
●

●●●

●
●●●

●●
●
●●

●

●●

●

●●

●

●
●
●

●
●
●
●
●
●●●
●

●
●●
●
●
●●●
●

●

●

●●

●
●
●
●●
●●
●●
●
●●
●

●●
●
●
●●●
●
●
●
●
●●

●●

●

●●
●●
●
●

●
●●●
●

●●●●

●●
●
●
●

●
●●●●●
●
●

●●●●

●
●

●

●
●●
●
●
●●

●

●
●●

●

●

●
●●
●
●

●
●●
●
●●
●●●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●●●

●

●
●
●

●

●

●

●

●
●

●●
●

●

●●●

●

●

●
●
●●
●●●

●
●●

●

●
●

●
●●

●●
●
●●

●

●
●

●●

●

●●
●●●

●
●

●●

●

●
●
●●
●●
●

●
●
●

●
●●
●

●●

●

●●●

●

●●

●●

●
●
●

●

●
●

●
●
●
●●

●

●●
●

●

●

●

●
●

●
●

●●

●●

●

●●●

●

●●
●

●

●

●●

●●
●●

●

●●
●
●●

●●

●
●
●●

●

●

●

●
●

●
●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●●

●
●

●

●●

●

●●
●
●

●

●

●●

●●●
●
●

●

●
●
●

●
●
●●

●

●
●
●

●

●
●●
●
●●
●●●
●
●●

●

●●
●

●

●

●

●

●
●
●
●
●
●

●
●
●
●●●
●●
●

●●●

●

●
●
●●
●
●
●●●

●●●

●

●
●
●●●
●●●●
●

●

●●●
●●
●●●
●●●

●●

●●

●●

●
●

●

●
●●●
●
●

●
●
●
●
●
●
●

●

●●

●●

●
●
●●

●

●

●
●
●●
●●
●
●●
●

●

●

●

●●
●
●●

●

●●

●●

●●

●
●
●

●●●

●

●
●●
●●

●

●●●
●

●●

●

●
●
●

●

●●
●●

●
●●●
●●
●●●●
●
●
●●●
●

●

●
●

●●

●●
●
●

●
●
●
●
●
●
●●
●●
●●

●

●
●

●

●

●
●

●

●●

●

●
●
●

●●

●
●
●●
●●
●●
●
●
●
●
●
●
●●
●●●
●●

●
●●

●

●
●

●
●●

●●●
●●●

●

●●
●
●
●

●●

●

●

●

●
●
●●

●
●●
●●●
●
●
●●
●

●
●●
●

●
●
●

●

●
●●
●
●●
●

●

●●

●
●●●
●●●
●
●●
●
●●
●
●●
●●
●●
●●●●

●

●●
●●●●
●

●

● ●
●
●

●●
●
●

●●
●
●●

●

●
●
●
●●
●

●●

●

●

●
●

●●●●

●●

●

●●

●

●

●

●
●

●

●

●
●●
●

●●

●●
●●●

●

●●

●
●●
●
●
●
●
●
●

●
●●

●
●

●
●
●●●
●●
●
●
●

●
●●●●●

●

●

●

●

●

●
●

●

●

●
●
●●●●

●●●
●●●
●

●

●

●

●●

●

●●
●

●

●
●

●

●●

●
●●

●

●
●

●
●
●
●
●●

●
●●
●

●
●

●

●

●
●
●
●●●●

●

●●●●●

●

●

●

●●
●
●
●●●
●●
●

●
●●●
●
●
●

●

●
●

●
●●●
●
●

●

●●
●

●

●
●
●
●
●

●
●
●
●●

●

●
●
●
●
●
●
●

●

●

●
●●●
●
●
●
●●●●●●

●

●

●

●●●
●
●
●

●

●

●

●
●●●●
●
●

●

●

●
●
●

●

●

●
●

●
●●●
●
●

●

●●●●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●●

●

●●

●

●
●

●●

●

●●●●
●

●

●

●
●●
●
●●●●

●
●
●
●
●
●●
●
●●
●●●●

●

●
●●

●
●●●
●●

●

●
●

●

●

●

●
●●
●
●
●

●●

●
●●
●●

●

●●

●

●●
●●●
●

●
●●

●

●
●●●

●

●●●

●
●
●
●●●●
●
●●
●●
●●
●
●
●
●

●
●●●
●
●
●

●
●
●

●

●●●●●●

●
●●●
●●●
●●●
●
●
●

●●●
●

●

●

●

●

●
●●

●

●

●●
●●●
●
●

●

●
●
●●
●
●●
●
●●●●

●

●
●●
●
●●●●

●
●●●●
●
●

●

●●●
●
●
●●
●
●
●

●
●

●
●●
●
●

●

●●
●●●

●
●●●●●●●
●
●●
●
●●
●
●
●●●
●●●
●
●
●●●

●●

●
●●●
●
●●●

●
●●
●●

●●
●●
●

●●●●●●
●
●
●●
●

●

●●●
●
●

●
●
●
●●
●
●
●●
●
●
●
●
●●●
●
●●

●

●●
●
●
●
●
●

●●
●
●

●

●
●
●
●●●
●
●
●

●●

●
●
●●●

●
●●

●

●
●●●●●

●
●●●●

●

●●●●
●
●

●
●
●

●

●

●

●

●●

●●
●●
●

●
●

●
●●
●
●●●●●●●●●
●●

●●●●
●●

●
●
●
●
●

●●
●
●
●
●●
●
●
●●●
●●

●

●

●

●
●
●●●●
●●●
●●●
●●
●
●
●●

●

●●●●
●
●

●

●
●
●●●
●●●●●●●●●●●
●●
●
●●
●
●
●
●
●
●
●
●

●●●
●
●●

●

●●●●●
●
●●

●

●●●●●
●
●
●
●●●

●

●●
●
●
●
●●●
●

●●

●
●●●●
●●●

●●
●
●●●

●●

●●●●●●
●●●

●

●●●●●●
●
●
●

●●

●●●

●

●

●
●
●●

●
●
●

●

●●

●
●
●●

●●

●
●
●●
●

●●

●

●
●
●●

●

●
●

●
●

●

●

●
●
●
●
●
●●●●
●●

●
●
●

●
●
●
●
●●●

●

●●

●
●
●
●

●●
●

●

●●●

●

●
●
●

●
●●
●
●
●
●●●

●

●●●●●

●

●

●●●●

●

●
●●●●●

●

●
●●

●

●
●

●

●

●
●

●●

●
●●●

●
●

●

●

●●

●

●
●●
●

●
●
●●●
●●●●
●
●
●●

●
●●●●

●

●

●

●

●

●

●
●

●
●
●●●
●
●
●
●●
●

●●●

●●●
●●
●
●●●
●
●●
●
●●

●

●
●
●
●
●●●●
●●●●●●●

●

●
●

●
●

●

●
●●
●
●
●●
●
●

●●

●●

●

●●●
●●●●
●
●
●

●

●●●●●
●●
●●
●
●
●●

●

●●●●●
●●●
●
●

●
●
●
●

●

●●
●

●

●

●
●
●

●
●●●
●
●
●●
●●●
●●
●
●
●●
●
●
●
●●●
●
●
●
●●●
●
●●

●

●
●●
●
●
●●

●

●
●●●

●

●
●
●
●
●
●

●
●

●

●●●
●

●
●
●●
●
●●●●●
●
●●●●
●●●●
●
●
●●●●

●●
●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●
●
●●
●●
●●
●

●

●
●●
●
●●
●
●●●●●
●●●●
●
●
●
●

●
●
●●●●●●

●

●
●●●

●
●
●
●
●
●

●●●●

●

●

●

●●

●
●●
●
●●
●

●●●●

●
●
●

●
●

●

●

●

●●

●
●●●●●●

●

●
●

●●●●●●●
●
●

●
●●

●

●●
●

●
●

●

●

●●●
●
●●●●●

●
●●●
●

●

●●●●●●
●●●●●
●

●

●
●

●

●●

●
●
●
●
●
●●

●

●
●●
●●●
●
●

●●●
●●

●

●

●

●●●
●

●
●
●
●

●

●
●

●

●

●
●●

●

●

●
●

●●

●
●

●●●●
●●
●
●
●●
●●
●
●●●

●●
●
●
●●
●
●
●
●

●
●●

●
●●●●●●

●
●●
●
●
●●●●

●
●●

●
●●
●

●

●

●

●●●●

●

●

●
●●●●
●●

●

●

●

●
●●●●●●

●

●

●●●●

●●●
●
●
●●
●
●
●
●●●
●
●
●
●
●
●●●
●●●●●
●
●
●●●●●●●
●●●
●

●

●

●

●
●●
●

●●

●

●

●

●

●

●●●●
●●●
●
●
●
●

●

●

●
●
●
●●●●
●●●

●

●
●
●

●●
●●●
●
●●

●

●

●

●

●

●
●

●

●●●●●●

●

●●●

●
●
●

●

●●
●

●●●
●●●
●
●●

●

●

●

●●●

●

●●
●
●●

●
●
●●

●

●●

●

●
●●
●●
●●
●●●●
●
●●●

●
●●
●

●●●
●●
●●●
●

●

●●
●●●●

●

●
●

●

●
●●
●
●
●
●●●●

●●

●

●
●
●

●

●

●

●

●

●
●
●
●●
●●●

●●

●●●●●

●

●●●●●
●●
●
●

●

●
●●●
●●
●
●

●

●●
●
●

●●
●

●
●
●●●

●

●
●
●
●●●●●
●

●●
●
●
●
●●●●

●

●
●●●
●●
●
●●●●

●

●

●●
●●

●
●●

●
●
●●
●
●
●
●

●●
●●
●

●●
●●
●

●

●

●

●
●●●●
●
●●●
●
●●●

●

●
●●
●
●
●

●

●
●●●

●

●
●

●●●
●
●●
●

●

●

●●
●
●

●

●

●

●●●
●
●
●
●●●
●
●●●●●●
●●●
●
●●●
●
●

●

●
●●
●
●
●

●●

●●

●
●
●●

●

●●

●
●
●
●●
●●

●
●

●
●●

●

●

●

●●●
●
●

●●●

●

●
●
●

●

●

●
●
●

●
●●●●

●

●

●

●

●●●

●

●

●
●

●

●
●
●
●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●
●

●●

●
●●

●
●●●
●

●●●●●●
●
●
●

●

●

●
●

●
●
●
●

●●●●
●

●

●

●

●
●

●

●●

●
●
●●
●

●●

●●●

●

●
●

●

●
●
●
●●
●
●
●●●●
●●
●●
●
●
●
●●
●
●●
●●●●

●
●●
●●
●
●

●

●
●●●●●●
●●●

●●

●
●
●
●
●
●
●

●●
●●

●
●
●
●

●

●
●

●●

●
●●
●

●

●
●

●

●●
●

●●
●
●
●●

●
●
●

●

●

●
●

●

●
●●●

●

●●●

●

●
●●●

●

●
●●●
●●
●
●●

●

●
●

●

●

●●

●
●
●

●
●
●
●●●
●

●●●

●

●
●

●
●●●
●
●●
●

●

●

●●
●
●

●

●
●●
●
●

●●
●
●●

●

●
●
●
●
●●

●

●
●

●
●

●

●●
●
●●●●

●
●
●
●
●
●

●

●
●

●

●●●●●●
●●

●

●

●

●●
●
●
●●●

●

●
●●●●●

●●●
●
●
●
●
●

●

●

●
●
●

●

●

●●

●
●
●
●●
●●
●
●

●
●

●

●

●
●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●●

●

●

●

●●●●●●●

●●
●●
●●

●

●

●
●
●●
●
●●
●
●
●
●

●

●●●

●

●

●

●

●

●●●

●

●
●

●
●

●●●

●●

●●
●

●

●

●
●
●
●●

●
●

●
●

●

●●

●

●●●●
●●
●●●●
●
●●●●●

●
●●●
●

●●

●

●

●
●
●●

●
●
●

●

●
●●●●
●●
●
●
●●●
●●

●

●

●
●
●●
●●
●●●
●
●
●●
●
●●
●
●●
●

●

●
●
●●●
●
●●

●
●
●

●●●
●●
●
●

●
●
●●●●●
●●
●

●

●
●
●
●

●
●●●
●●●

●

●
●●●●
●
●
●

●●●●
●
●●●
●●●
●

●
●
●●●

●

●

●

●

●

●●●
●
●●●
●
●
●
●

●●●
●●

●
●
●●●●●
●

●

●

●

●

●

●●
●

●

●●●●
●
●●●●

●

●●●
●
●●
●

●

●●
●●

●●●

●

●●

●●
●
●●
●●●
●
●
●●

●●●●
●●●
●●●●●●●●
●
●
●●
●

●

●
●
●
●●●●●●
●
●
●●●
●
●●
●●●
●

●
●●
●
●●●
●
●●
●●●●
●
●●

●
●●●●

●

●●●●●

●
●●
●
●

●

●
●
●●
●
●●●●●

●

●●
●
●●

●

●
●

●

●

●
●
●●
●
●●
●

●●

●

●

●●
●●●●●●
●

●

●

●●

●●●

●

●●●●●●●

●
●
●
●
●
●●
●●

●

●
●●●●●●●
●●●●
●
●
●●●●
●

●

●
●
●
●
●
●●●●
●

●●
●●●
●
●
●

●

●●●●●
●
●●

●

●
●
●●
●●●●
●

●
●

●
●●●●
●

●●
●●●●
●

●

●
●
●

●●

●

●●
●
●
●
●

●

●●
●

●

●

●●
●
●

●
●
●

●
●
●●
●
●
●
●

●

●
●
●
●
●

●
●

●
●●●●
●●●●●●●
●●●●

●

●

●

●

●

●
●●

●●

●●●
●
●●●
●●●●●●
●
●

●

●●●●

●
●●
●
●

●

●
●
●●●●●

●
●
●
●
●●

●●

●
●
●
●
●●
●
●
●

●●
●
●
●●●
●
●●●●
●●
●

●●●
●●●

●

●

●
●●●

●

●
●
●
●●

●

●

●
●
●
●●

●

●●

●
●●

●●
●●
●●●

●

●●●●
●●
●●●●●●
●●●●

●
●
●
●

●●●
●
●

●●●●

●●

●
●
●●
●●
●●
●
●
●●
●●

●
●●
●●
●

●

●
●

●●
●

●
●
●●●●
●
●

●●●●
●●
●
●
●
●●
●●
●●●
●●
●
●
●
●
●

●

●
●●

●

●●
●
●●
●●

●
●
●
●

●

●●●
●●●●

●
●

●

●
●

●

●
●
●

●
●●●
●●

●●●●●●
●
●

●

●●●

●

●●

●
●●●
●

●

●●●●
●
●

●●●●●
●●
●
●
●

●

●

●●

●

●●

●●●●

●

●●

●●
●
●
●●

●●●●

●

●●

●

●
●●●●
●
●

●
●

●●

●

●●●

●

●●

●
●

●●●●●●

●

●●
●
●

●
●
●
●●

●

●

●
●
●
●

●

●●
●
●

●●
●
●
●
●

●

●●●

●

●
●

●

●
●●●

●

●●●
●●●
●
●
●
●●●
●
●●

●

●●
●●●●●●

●

●
●

●

●
●
●

●

●
●

●
●

●●●●

●
●●

●

●
●
●
●
●●
●
●

●

●
●●
●

●
●●
●
●●

●

●●
●●
●

●●●

●

●
●

●

●●
●

●

●

●●
●
●
●

●●●
●●●
●●●
●
●

●
●
●●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●●●●
●
●
●
●
●
●

●
●

●

●●●
●●
●

●

●

●
●

●

●

●
●●●

●

●

●
●
●
●●

●

●

●

●●●●

●

●●
●
●

●●

●

●●
●

●

●

●●
●
●●●

●●
●

●●
●

●

●
●●

●●

●

●●●●

●●
●●●●
●
●●●
●●

●●
●●
●

●

●
●

●
●●
●
●
●●
●
●●●

●

●

●

●

●

●
●●
●●●●
●
●

●●
●
●

●
●●●
●●
●●●

●●
●
●●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●●●

●

●●●

●
●

●

●
●

●
●

●●●●●
●

●●

●
●●●●

●●
●

●

●●●●●●●
●
●●
●●●
●

●
●●●●●

●
●
●

●

●●
●
●
●
●
●●
●

●

●●
●
●

●●
●
●

●●

●

●
●●●●
●

●

●
●●
●

●
●●●
●
●●●●

●

●●●
●
●

●
●

●
●●

●

●●●
●●●
●
●●
●
●

●

●●●●
●●
●●
●●
●

●

●●●●

●●

●●●
●
●●

●●
●
●●
●

●

●

●
●
●●
●
●
●●
●●
●
●

●

●
●
●●●●●●●

●

●●

●

●●●
●
●
●
●●
●

●

●●
●
●
●
●
●●
●●●●

●
●

●
●●
●

●

●

●●

●
●
●●●
●●
●
●
●
●●●●●●

●

●

●

●
●
●
●●
●
●●●

●
●

●
●

●
●

●●

●

●●●●●
●

●●
●

●●
●●●
●●●
●

●

●

●●●●●●
●
●●

●

●

●

●
●
●●
●●●
●●

●●
●
●

●●●

●

●●●
●
●
●
●●●●
●
●
●

●

●
●●●

●

●

●

●●●

●

●
●
●
●

●

●
●
●
●
●
●

●●

●●●

●
●
●
●●●
●

●

●●

●

●●●●

●●●●●

●●
●

●
●
●

●●
●

●
●

●
●
●●

●

●
●
●
●●
●
●
●

●●

●

●
●
●

●

●●●
●
●
●
●●
●
●●

●

●

●

●

●
●
●
●●

●

●●●●

●

●
●●●

●●

●

●

●

●

●●

●

●
●
●
●

●

●●
●
●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●●
●
●●●

●

●

●●

●●
●
●●
●●●●●
●
●
●
●

●

●●●
●

●

●●
●●●
●
●

●●

●

●

●

●

●●●
●
●
●
●●
●
●
●
●

●
●●

●
●●●

●

●●

●●
●
●

●●

●

●●●●●
●●
●

●
●
●●●●
●
●●●

●●
●

●●
●●
●
●
●●●●
●
●

●

●
●

●

●

●
●●

●

●
●
●
●
●
●

●
●

●

●●

●

●

●●

●
●●
●●
●

●●
●
●
●●
●●●●
●
●
●●
●●

●●

●

●
●
●●●
●
●

●

●

●

●
●
●
●
●

●●
●●

●
●●●
●

●

●
●
●

●●

●
●

●

●

●

●

●●●●
●

●●
●●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●
●

●●
●
●

<
 0

.1
0.

5
2

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●

●●●●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●
●●●●
●
●
●●●●●
●
●

●

●
●●●
●●
●

●
●●
●●
●

●

●●●●

●

●●
●●●●●●●●●●
●●●●
●●●●
●●
●●●●●●
●●●●●●
●
●●●
●
●●●
●●●●●●●
●
●
●●

●

●

●

●●

●
●●●●●●●●●●
●●●●
●
●●●●●●●
●
●●●●●●●
●
●
●●●
●●
●
●●●●●●●
●●●●●
●
●
●●●●
●
●●●●●●
●●●●●
●●●
●●●
●●●●
●
●●●
●
●

●●
●
●●●●●●●
●●●●●
●●●
●●
●●●●●●●●●●
●
●

●
●●●
●●
●
●●
●●
●
●●
●
●●●
●
●●
●

●
●●●●●
●
●
●
●
●●
●
●
●
●
●

●●
●
●
●
●

●

●●●

●

●●
●

●

●●●
●
●

●●

●●

●

●

●

●●●●
●
●●●●●●●●●●●●●
●●●●●●
●●
●

●
●
●

●

●●●
●●
●●●
●●●●●●
●●
●●●●●●●●●
●

●●
●●
●

●
●
●
●
●●●●
●●
●

●●●●●
●●●●
●●●
●
●
●●●●●●●
●
●●●●●●
●●●●
●●●●
●●
●●
●

●
●
●●●●●
●
●
●
●

●●
●●●●●●●●●●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●

●

●●●●●●●●●●
●●
●

●

●

●●●●
●●●●●●●
●
●●●●●●●
●
●●●
●
●●●●●
●●●
●
●●●●

●
●●
●
●●
●●●●
●
●
●
●
●
●

●●
●
●●●●
●

●

●

●
●
●
●
●

●●●

●
●

●●●
●●

●●

●●

●

●

●

●●●●●●●●
●
●●●●
●●●●●●
● ●

●●●●●
●●●●●●●
●
●●●●●●
●

●●●●●●●●●●●
●●●●
●
●●●●
●●●●●●●●●
●●
●

●

●●●
●
●●●●●
●
●●●●●●●
●●●●●●●
●
●
●
●●
●●
●●●
●
●●
●
●●●●
●
●
●
●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●
●
●●●●
●●
●
●
●●
●
●●
●
●
●●
●●●●●

●
●●●

●
●
●●●
●

●●●●●

●

●
●●●●●
●
●●●●●●●●
●●●●
●●
●●
●●

●

●
●●

●

●
●
●

●

●●●●

●
●

●●

●
●●

●

●●●●

●

●●●●●●●●●●●●●
●●

●
●●●

●
●●●
●●●●●
●●●●●●●
●●●●●●●

●

●●●

●

●
●
●●●●
●
●
●
●
●
●●●●

●●●
●●

●

●
●
●●●●
●●●●●●●●●●●
●

●

●
●●●●●
●
●●●
●
●

●

●●●●
●●●
●
●
●●●
●
●
●

●●●●●
●
●●●

●
●
●
●●●
●
●●●●●●
●●●
●●●●●

●

●●●●●●●●●
●●●●●
●
●●●●●●●
●●
●

●

●

●●

●●

●●●●●●
●●
●●●●●

●

●●
●●
●●
●●●

●

●●

●

●●●●
●
●

●●●
●●
●
●
●
●●
●

●

●
●●●●
●●●
●●

●

●
●
●●●●●●●
●
●●

●

●●●
●
●●●●●●●

●
●●●●
●
●
●●●

●

●●●●●
●
●

●
●
●●●
●●
●●
●
●
●●
●
●
●●

●

●

●
●●●●
●
●

●●●●
●
●

●●
●
●●●
●●●●●●●●
●
●●
●●●●

●●●●
●
●
●
●
●●●●●
●
●●

●

●●
●
●
●●●●●●●●●●●
●
●●●●
●●●●●
●
●
●
●●
●
●●●
●●●

●

●
●●
●●●●●●
●●
●●●●●
●
●
●

●●●
●●●●●

●

●●
●●
●
●●●●

●

●●
●●●●
●

●
●●
●
●

●

●
●
●
●

●
●
●
●

●

●●

●

●●

●

●●
●
●

●

●●
●
●●
●
●●●●
●
●

●

●
●

●●●●●●●●
●

●

●

●
●●●
●
●
●

●

●●
●●
●

●

●

●●●●●●●
●

●

●●●●●
●
●
●
●●

●

●●●●●●●●●●●
●
●
●
●●
●●
●

●
●●
●
●●
●●●
●

●
●●

●

●●
●

●
●●
●
●
●●

●●
●●●
●
●
●
●●

●

●
●●
●●●●●●
●
●
●●

●●
●●
●●●
●●●●●●●●
●
●●●●
●
●●●●●●●
●
●●●
●
●

●

●
●●●
●
●
●●
●
●
●
●●●●●●
●●●
●●
●
●
●●●●●
●
●●

●
●

●●●●
●●●●
●
●●
●●
●●●
●

●

●●

●●●
●

●

●
●

●

●
●
●●●●
●
●
●

●

●●
●
●
●
●

●

●●

●●●

●

●

●

●●
●
●

●●●

●

●
●●●●
●

●

●●

●
●

●
●

●

●●●
●

●●●

●●
●●

●●
●●

●

●

●●●

●
●
●●●●●●
●
●●●
●

●
●
●

●

●
●
●
●●●●●
●

●●

●

●●●
●

●●

●

●
●

●

●●●●

●●●

●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

●
●
●

●
●●●●●●●
●
●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

1.
0

2.
0

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

<
 0

.1
0.

2
0.

3

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

II

●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●
●●●●●●●
●●●●●●● ●●

●●●●●●●
●
●●
●●
●●●
●●
●●
●
●●
●
●●
●
●●●●●●●●●●●● ●●●●●●●●

●
●●●●●●
●
●●●
●●●●●●●●●●●●●●●● ●●●●

●
●
●●●●●●●●●●●●●

●●●●●●
●●
●●●●●●●

●
●●●●●●●●
●●●●●●●●●●●
●●
●
●●●●
●
●

●
●
●
●
●●●●
●●
●●
●
●●●●
●●
●
●
●

●●●●
●
●
●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

2.
0

10
.0 ●●●●●●●●●●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●●●
●

●

●
●●

●●●

●

●

●
●●●

●

●

●●●
●

●
●
●●
●●

●

●●

●

●●

●

●●●●
●●

●●●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●●

●

●●

●●

●●

●

●

●●●
●

●

●
●

●

●

●

●●
●●
●
●
●

●

●

●

●
●
●
●

●●●
●●●●●
●
●●●●●●●
●
●
●●●●●●
●●
●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

●
●●

●
●
●

●

●●●●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●●●●

●

●
●●
●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●
●
●●

●

●

●●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●●● ●●●●●
●●●●●
●●
●●

●

●

●

●

●

●

●
●
●

●
●
●

●

●●●
●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●
●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●
●

●●

●

●●●

●

●●
●

●

●

●

●●

●

●
●●●

●●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●●●●●●●●●●●●●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●
●●

●●●●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●●●

●
●

●
●
●
●

●

●

●●
●

●
●

●●

●
●
●

●●
●

●

●

●
●●●
●●

●

●

●

●

●
●
●
●
●●
●

●

●
●

●
●

●

●●●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●●
●

●

●

●

●●●

●

●
●

●

●

●

●●
●●

●

●●

●

●
●
●
●
●

●

●
●
●

●

●

●
●

●
●

●
●●

●

●

●
●●

●
●
●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●●

●

●

●

●●

●

●●
●

●

●
●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●●

●

●●
●

●
●

●●

●
●
●

●

●●

●

●
●●●●●●●
●
●
●●
●●
●●●●
●
●
●●
●●
●
●
●●
●●●●
●●●●●●●
●●●
●
●
●●
●
●●
●
●●●●●
●●●
●●
●
●●●●●●●
●

<
 0

.1
1

5
20

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●
●●●●●●
●●●●●
●
●●
●●●
●●●
●●●
●
●

●

●
●
●●
●
●
●
●
●
●●
●●●●
●●●
●●
●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●●
●
●●●●●
●●●●●●●●●

●
●●
●●

●
●●●
●

●

●
●●●
●

●●

●
●
●●●●
●
●
●●●●
●
●●
●
●●
●
●
●●●●●●●●●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●●●●

●

●●●
●●●●
●
●
●●●

●

●●●●
●
●●●
●●
●
●
●●
●●●
●
●●●
●●●
●
●
●●
●●
●●●●
●
●●
●
●
●
●●●●
●●
●●
●
●●

●●
●
●
●
●●●●●●●●
●
●●

●●●●
●
●
●●
●●
●●
●
●●
●●
●●
●
●●

●

●●
●
●●
●●●
●

●

●
●●●
●●●

●
●●●
●●
●

●
●●●●●●●●

●
●
●
●

●

●
●●
●
●●●●●
●
●

●

●●●●

●
●
●●
●

●
●
●●
●
●●●
●●●●
●●
●
●●
●
●
●
●
●●●
●
●●

●●
●
●●●
●
●●●●
●
●
●

●
●●
●
●●●●
●
●
●
●●
●●
●●
●
●
●●
●●
●
●
●●●
●●
●
●●
●●
●
●
●

●
●
●

●
●

●
●
●
●●●●
●●

●●●●
●
●

●
●
●●

●

●
●●●●
●

●●
●●●●
●●
●
●

●

●●
●
●●
●●●●●●●●●●●
●
●●●●
●
●●
●●●●●
●●●
●
●●●
●●
●
●●
●
●●●●●●
●
●
●●●●●
●●●●
●
●●
●
●●

●
●●
●
●●
●●●●●●●
●●
●●
●
●
●
●
●●

●

●●●●●●

●

●

●

●●
●
●
●

●
●●●●●●●

●
●●●●
●●●
●●●●

●

●●●
●
●●
●●
●●
●●
●●●●
●●●
●●
●●●●
●●
●
●
●
●
●●●
●
●
●
●
●

●
●
●

●
●●
●

●●
●●●
●

●
●●●

●

●●●
●
●

●

●●●
●●●
●
●
●
●
●
●●●

●
●
●●
●●
●
●●
●
●
●●●
●
●
●●●
●

●●●●
●●
●●●●●●
●
●●
●
●

●●●●●

●

●●●●●●
●
●●●●●
●●●●●●
●
●
●
●
●●
●●●●
●
●
●●●
●●
●●●●●●●
●●●●
●
●●
●●
●
●●
●●
●
●
●●●
●●
●●●●
●●●
●●●
●●
●
●●●
●●
●●●●
●●●
●●●●●
●●
●●●●
●●●

●

●

●●●●●●●●●● ●●●●●●
●●●●
●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●
●
●●●●●●●●●
●●●
●
●
●
●●●●
●●●●●●●●
●●●●●
●
●
●
●●
●
●●●●
●●●
●
●●

●

●●
●
●
●
●
●
●●
●●●●●
●●●●●●
●
●●●●●●●
●●
●●
●●
●
●●●●●●●
●●●●
●
●
●
●●
●
●●●
●
●

●

●

●
●●
●●●●
●
●
●
●●
●
●●

●

●●●
●
●

●

●
●●●
●●●
●
●
●●

●●●
●
●●
●
●

●

●

●●
●●●●
●●
●
●●
●●

●●
●

●●●

●
●
●
●
●●●

●

●
●
●●●●●
●●●
●
●●●●
●●
●●●●
●
●
●
●●
●●●
●●●●●●●●●●
●●●●●●●●
●
●●
●●●●
●
●●

●

●●●●●

●●
●
●
●●
●
●●●●
●●●●●●

●
●●
●●
●
●
●
●●
●

●●
●●●●●●●●
●●●
●
●●●●●
●●●●●
●●●
●

●

●
●●●
●
●●●
●
●

●

●
●
●●●●●●●●

●●●●●

●●●
●●
●
●●●●●●●
●
●
●●●●
●
●
●●●●

●

●●●●●●●

●●

●●●
●
●●
●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●
●
●
●●●
●●●●●●●●●●●●
●
●
●
●
●
●
●●●●
●●●●●●●●●

●

●

●●●●●●●● ●●●●
●●
●●
●
●
●●
●
●●●
●●●●●●●
●●
●
●●
●●●●
●
●
●
●●●
●
●●●●●●●●●●●●
●
●●●●●●●

●
●●●
●
●●●
●●●●
●●
●●
●●
●●

●
●

●●
●●
●●●
●
●
●●●●●
●
●
●●
●●
●

●

●
●●●●
●

●●
●
●●●
●
●●●
●●
●●●
●
●
●●●●●
●

●
●●
●

●●●●
●●●
●
●●●
●
●●
●
●

●

●●
●●
●●
●●●●●●
●●●
●●

●

●
●●
●●
●●●●●

●

●●
●
●●
●
●
●
●●●●●●●●
●●
●
●●
●
●
●

●
●

●

●●●●
●
●●
●

●

●●
●
●●●
●●●●●●●●●●●●●●
●
●●
●
●
●
●●●
●●●●●
●
●●●●
●●●
●●
●●●
●
●●●●
●●●●
●
●●●●
●●●●●●●●●
●
●●●
●
●●●●●●●
●
●●●
●●
●●●●
●
●●●●●
●
●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●
●
●●●
●●●●●●
●
●●
●
●●
●
●
●
●●●

●

●●●●●●●●●●●●
●●
●●
●
●
●●

●●
●●
●●●●●●

●
●
●●
●●●●
●●
●●●●●●●●●●●
●
●
●●●●●
●●●
●●
●●●●●
●
●●
●
●●
●●
●
●●●●●

●

●●
●●
●
●●●●●●●●
●
●●
●●
●●●●●
●●●●●
●●
●●●●●
●●
●●
●●
●●
●
●●●●●●●●●
●
●●●●●●●
●●
●
●●
●
●●
●
●●
●●
●●
●
●
●
●●
●

●●●●●●●
●●●●●●
●
●●●●●

●

●●

●
●
●●●●
●
●

●

●●●●
●
●
●●

●
●
●
●●●
●

●
●
●●

●
●●●●●●
●●
●
●
●●●●●
●●●
●●●●●●
●●
●

●
●
●
●
●

●
●●
●●●●●●
●
●
●
●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●
●●

●●
●
●●●●●●●●

●

●
●●

●●
●
●
●●●●
●●●●
●
●●●●●●●●●●●
●
●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●

●
●
●●●●●●●●
●
●●●●●●●
●●●●
●●●●●●
●
●●●
●●●
●●●●
●
●●●●
●●
●●●●●●●●
●
●●
●●
●●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●

●

●
●

●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●
●●

●

●

●

●●●●
●
●●●
●●●●●●●●

●

●●●●
●●
●●●●●●●●●●●
●●●●
●
●●
●●
●

●

●
●●
●
●

●

●●●

●
●●●●
●●●●
●
●●
●●●
●●
●●●
●
●●
●
●●●
●●●●●●
●●●●●

●●
●●●●
●
●
●
●
●●

●●●●
●●
●
●●●●●
●
●●●●
●●●●
●
●
●●●
●
●●
●●●●●●
●●●●●●●●●
●●●●●
●
●●
●
●●●●●
●
●●
●●●●●
●●●●●●●●●
●
●
●
●●●●●●●●
●
●●
●●●●●●
●●●
●●●●●●●●●
●

●●●●
●●
●●●●●●
●●●
●
●
●

●●●●
●●●
●●●●
●●●
●
●
●
●●●●
●
●●
●●
●
●
●●●●●●

<
 0

.1
0.

5
2

5

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III

●●●●●●●
●
●●● ●●●●●

●●●●●●●
●●●●

●●●●
●
●●●●●
●●●●●

●●●●●●●●●
●●
●●●

●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

● ●●

●
●●
●
●●
●

●

●

●

●
●

●

●

●●
●

●

●●

●

●
●

●●
●●●
●

●●●
●●

●
●
●
●●●●
●

●●●●●

●

●

●●
●
●
●
●
●

●●

●

●

●
●

●
●

●

●●
●
●
●
●

●

●●
●

●
●
●●●

●
●

●

●

●

●●
●

●

●●●
●
●
●
●●

● ●●●●●●●●●●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

2
5

20
50

●●

●●●●●
●●●●●●●●●●●

<
 0

.1
1

5
50

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R
IV

●●● ●●●●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
20

10
0

10
00 ●

●●●●●●●●

●

●
●

●

●

●

●●

●
●
●

●

●

●●

●

●●●●●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
10

50

●●
●

●●

●● ●
●

●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
20

10
0

10
00

V

●

●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
10

0
50

0

●

●●
●●
●●
●

●
●

●●

●
●●●
●

●
●

●●●

●●●●
●
●

●
●●●
●

●

●●

●

●
●

●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
50

●●●

●●●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

50
20

0
10

00

Figure 12.9.: Runtime in seconds of the heuristics including the time spent in PruneSteinerN-
odes.

115

EVALUATION OF HEURISTICS: RUNTIME OF PRUNING [S]

Fat Tree IGen Torus

I

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
05

0.
10

0.
20

●●●●●●●●●●●
●●
●●
●

●
●●●

●

●●
●●
●
●●

●

●●●●●●
●
●
●●●●●
●
●
●●●
●●
●●●●
●
●●●
●
●●●●●●
●●●
●●●●●●●●●●●
●●●●
●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●

●●●●●●

●

●●●
●
●●

●●●●

●●●

●

●
●●●●●●●●
●●●●●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●

●
●●●●●●
●
●●
●
●●●●●
●●
●●
●
●●●●●
●●
●
●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●

●●

●●●
●
●

●

●
●

●

●●●●●●●●●●●
●●●●●●●
●●●●●
●●●
●
●●●
●●●●●
●
●●
●●●●●●●●●●●
●●
●
●
●●●●●●
●
●●●●●

●●

●●●●●●●●●

●

●●●●●●●●
●
●
●●●●
●●
●
●

●
●●●●●●●●●
●●
●
●
●●●
●
●●●
●
●●●●●
●●
●
●
●●●●●●●●●●●●●
●●●●●●
●
●
●
●●
●●●
●●●
●●●●●●●●●●●●
●●
●●
●
●●●●●●●●●●●
●
●
●
●
●●●●
●●
●●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●

●

●●

●●

●

●

●●

●●

●●
●

●●●●

●

●
●
●

●

●

●

●

●●

●●●●
●

●

●

●●

●

●

●●

●●●●●●●
●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●
●●
●●●

●

●●

●●●
●
●
●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●
●●●
●●●●
●●
●●

●

●●●●●●●●

●

●

●●
●●

●

●●●●
●

●●

●●●●

●

●●

●

●●●●●●●●●
●●●●●●●
●
●
●●
●●●
●●●●●●●
●
●●●●●●●●●●●●●

●●

●●●●●●
●
●●●●●

●
●

●●
●●
●
●●
●●●●●●●

●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●
●●●
●
●●●
●●●
●●●●●
●
●●●
●
●
●●●●
●●
●●●●
●
●●●●
●●
●
●●
●●●●●●
●
●●●●●
●
●●
●
●●
●●●●●●●●●●●
●
●

●
●●
●●
●●
●
●●●●
●●●●●●
●
●●●
●
●●●
●

●
●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●●●●●●●●●●●●●

●●

●

●
●●●●●

●

●

●●

●

●

●
●●
●

●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●

●●

●

●●●

●●●●●●●
●
●
●
●●●●●
●●●●●
●
●●●
●
●●●●
●●
●
●
●●
●●●●●
●
●

●

●●●●●●●

●

●●●●●

●

●●

●●

●
●●
●

●

●
●●●

●

●●
●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●
●
●
●●●●●●●●●●●
●
●●
●●●●

●
●
●
●●●●
●
●●●●

●

●●●●●●●●●●●

●

●●●●

●●

●●●●

●

●●●●●●●●

●
●
●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●
●
●●●●●●●●●
●
●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●

●●
●
●

●●●

●
●
●●
●●
●
●●

●

●●
●

●●●

●

●
●
●●
●●
●
●●

●

●
●
●●
●
●●
●
●●

●●●●●●●
●
●

●

●

●

●●●
●
●●●
●●●●●
●●●

●

●
●
●●●●●●●●●
●
●
●
●
●

●●
●
●●●●
●●●
●●
●●

●

●
●

●●●●

●

●

●●

●
●
●●●●●

●

●
●●

●●

●●
●●●●●
●
●●

●

●●●●●●●●●●●●●
●●
●

●

●
●●
●

●●

●

●●
●
●
●
●

●

●●●●●●●●●●●●

●●●●

●●●●●●●●●

●

●●●●●●●

●
●

●●●●●●

●●●●●●●

●

●

●●●●●●

●
●

●●●

●
●

●●●●

●

●●

●●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●

●●

●●

●

●

●

●

●

●●●●●●●●

●

●
●●●●
●
●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●● ●●●

●

●

●●
●
●

●●●●
●
●●●●●●●●●●

●●

●●●●●●
●
●
●●●●
●

●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●
●●●●●●
●●●●●
●
●●
●
●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●
●●●●●●●●
●●●●●●
●
●●●●●
●
●●●
●
●●●●●●●●●●●●●●
●●●●●
●●●●●●
●
●●
●●●
●●●●
●●●●●
●
●

●

●

●
●
●

●●

●●

●

●
●
●
●●
●●●

●

●

●

●

●●●●●●
●
●

●●●

●

●●●●
●
●●
●
●
●●●●

●

●

●

●●
●
●
●●
●
●

●

●●●●

●

●

●●

●●
●
●●●
●
●

●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●●●

●
●
●●●

●
●

●●●●●●
●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●
●

●

●

●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●●●●

●●●●●●●●●●●●●●●●●

●●
●

●

●●

●

●
●●

●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●

●

●●●●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●

●●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●
●●●●●●

●●●

●●●

●●

●●
●
●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●

●●

●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●
●

●●●●
●●●●
●
●●
●●
●●●
●
●

●

●●
●●●
●

●

●
●

●

●
●
●●●●
●
●
●
●

●●
●
●●
●

●

●●
●●●

●

●

●

●●
●●
●●●

●

●
●●●●
●

●

●●

●
●

●
●

●

●●●
●

●●●
●●
●●

●●
●●
●

●
●●●

●
●
●●●●●●
●
●●●
●
●
●
●

●

●
●
●
●●●●●
●
●●

●

●●●
●

●●

●

●
●
●

●●●●

●●●

●●

●
●

●
●
●

●

●

●●●

●
●

●

●
●
●
●
●
●●●●●●●
●●●

0.
5

1
2

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
05

0.
10

0.
20

II ●
●
●●●●●●●●
●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●
●
●

●●
●
●●●

●
●
●●
●
●●●
●
●

●●●●

●●

●●
●
●

●

●●

●

●

●

●

●●●

●●
●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●
●
●●●
●●●
●
●● ●●●●●

●●●
●
●●●●
●●●●
●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●

●●

●

●●●●●

●
●
●

●

●
●

●
●●
●
●

●●●
●
●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●

●

●

●

●●●●●

●

●●●●●●
●

●●●●
●
●●●●

●●●

●

●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●●

●

●●●
●●●●●
●

●

●●●●●●●

●
●●●●●●●●●
●
●
●
●●●●●●
●
●●

●

●●●●●●●●●
●
●●●●●

●

●

●

●

●
●●
●

●

●

●

●●

●●

●
●

●

●

●●●●●●●●●●
●●●

●

●●●●●●●●●

●
●●
●

●●●

●

●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●
●
●
●
●●●

●
●●
●●●
●●

●

●●●
●●●●

●
●

●●●●
●

●

●
●●
●●
●

●
●
●
●
●

●●●●
●
●
●
●

●●●●
●●
●●

●
●
●

●●●

●●●●●●●●

●

●●●

●

●●
●●●●●

●
●
●●●
●●●●
●
●●

●
●●
●●●●●●●●●
●
●●
●●
●
●

●●●●●
●

●

●

●

●
●
●●
●
●
●●

●●
●●

●
●
●

●
●

●●●●
●
●

●
●

0.
2

0.
5

1
2

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

●●

●●●●

●

●
●
●●
●

●●
●
●
●●●●●●●
●● ●

●●●
●●
●●●●●●
●●●●

●

●●●
●●

●●
●●

●●
●●●
●●●●
●●●●●●●●● ●●●●●●●●●●●●

●

●
●
●●●●

●●

●
●
●●●●●●●●●●●●●●●●●

●●
●
●
●
●●●
●●●
●
●

●●●●●●
●●●
●●●
●

●●●
● ●●●●

●
●●
●

●●

●
●
●●

●
●●●
●●●●●●
●
●
●●

●
●●●●
●●

●

●●●●●●●

●●●
●●●●●
●

●
●
●●●●

●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

2
5

10

●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●
●●●●●
●
●
●●●●●●●●
●●
●●●
●●●●●●
●
●●●●●●
●●●●●●●●●●

●
●●●●
●
●●●●
●●●
●
●●●●●●●●●●●●●

●●
●
●● ●●●●

●

●
●
●●

●
●
●
●
●
●
●●
●●●●●

●●

●●
●

●

●

●
●
●●●●
●
●
●●●●●●
●
●

●

●●
●
●
●
●●●●
●

●

●

●●●

●
●

●

●●●●●
●●●●
●●●
●●
●
●
●
●●
●
●●●●●
●

●●●
●●
●
●
●
●
●

●
●●●●●●
●
●●●●
●
●●●●
●
●●
●
●●●●●●●
●●●

●
●
●
●
●

●
●
●
●

●

●● ●●
●●
●

●
●●●
●●
●
●●
●

●
●●●●●
●

●

●●

●

●●
●
●
●

●
●●
●
●●●
●

●

●●
●

●
●

●
●●
●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●

●

●
●●
●
●●
●●
●
●●●
●
●●●●●
●●●●
●●
●

●
●●
●●●●
●●●●●
●●●
●●●
●●

●
●
●

●
●●●
●
●●●●

●
●
●●●
●
●●●

●●●●
●
●●
●
●●●●●●●
●●
●
●●
●●●●●●●

●
●
●

●

●●

●

●●●●

●

●
●●
●●
●

●
●●●●

●

●●●●

●●

●●
●
●●
●●
●●●●
●
●●●

●
●●●

●●

●

●

●●
●
●

●
●

●●●

●

●
●●●
●●
●●

●

●
●
●●●

●●
●
●●

●
●

●

●●●
●●
●●●●
●
●●
●
●

●●

●●
●
●

●

●

●

●
●
●

●●●
●●

●
●●
●●
●

●
●●●
●

●●●●
●
●

●●●

●

●
●
●
●
●

●
●●
●●●
●
●●●
●●●●

●
●●●●

●

●●
●
●●
●
●
●
●
●
●
●
●●●●
●
●●
●●●●●●

●

●
●
●
●●●
●●●●

●

●●
●
●●●
●
●

●●●
●
●
●
●●
●●●●

●

●
●●
●

●
●
●●●●
●
●
●
●●

●
●

●

●●●●

●
●
●

●●●
●●
●●

●
●

●

●●●●

●

●
●
●●
●
●

●
●●
●
●●

<
 0

.1
0.

5
1

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

III
●
●●●●●●●
●
●

●●●

●

●●●● ●●●●

●●
●●●●

●●●●●

●
●●●

●
●
●

●●●●

●

●●●

●●●
●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

1
2

5
10

●●●●●●●●
●
●

●●

●●●●● ●●●
●●

●●●●●●●●

●●
●
●
●●●●●

●

●
●
●●●

●

●

●

●

●

●●●●●●●●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
10

20

●
●●●●●●●●●●●●

●●● ●●●

●
●
●●●●●●●●●● ●●●●

●●●
●

●
●
●
●●

●
●

●
●
●

●●
●●
●
●
●
●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

1
2

5
10

IV ●●● ●●●●
● ●●

●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
10

20

●
●
●

●

●●
●●●

●

●●

●
●

●
●
●
●
●

●●●●●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

10
20

50
10

0

●●

●
●
●

●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

5
10

20

V

●

●
●

●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
40

●●● ●
●

●●
●●
● ●

●
●

●
●

●

●
●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
50

10
0

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
40

70

Figure 12.10.: Runtime in seconds of Algorithm PruneSteinerNodes per call, if a solution was
found.

116

13. Performance of the Final
VirtuCast Solver

In this section the performance of the final VirtuCast solver is presented. For this set of
experiments the separation and branching parameters that were chosen in Section 11.5 are
used. Furthermore, depending on the topology and the graph size, LP-based heuristics are
included as presented in Section 12.4. Importantly, all other SCIP heuristics are disabled
such that solutions obtained have been generated by the LP-based heuristics or are obtained
via integral LP relaxations. Experiments are conducted on all the 225 instances as discussed
in Section 10.2. However, the instances used for this evaluation are generated independently
from the instances used in the previous, preliminary evaluations of Sections 11 and 12. Hence,
obtaining high quality solutions in this set of experiments validates the choice of heuristics and
cannot be attributed to ‘learning’ the right selection of heuristics beforehand.

Figure 13.1 presents the main performance characteristics of the final VirtuCast solver. For
the smallest graph sizes more than half of the instances can be solved to optimality. Consider-
ing the other graph sizes, the median objective gap on IGen and 3D torus instances is less than
1.5%, with the maximal gap being less than 5%. In contrast, on fat tree instances the median
objective gap lies within 3% to 5%, with the maximal objective gap of slighlty less than 6%
being observed on an instance of graph size II.

With respect to the improvement of the dual bound, we note that on graph sizes III to V
only a negligible improvement of less than 0.2% can be observed. For the smallest graph size,
the median improvement on fat tree and 3D torus instances lies at 3% and 2.5%. Given these
relatively small improvements in the dual bound, and by adding the dual bound improvement
to the achieved objective gap per graph size, the following observation can be made.

Observation 13.1: The objective value of the optimal solution always lies within at most
6% of the root’s dual bound.

In Figure 13.1 also the overall runtime of the heuristics is presented. Note that the heuristics,
consume less than half an hour of runtime. Thus, the selection of frequencies (and offsets) still
allows for progress in the branch-and-bound tree while achieving near optimal solutions.

Lastly, we note that it may be possible to further improve the performance of the VirtuCast
solver by using more advanced validation tools as cross-validation for finding the best combi-
nation of separation, branching and heuristic settings. Furthermore, as all of SCIP’s heuristics
were disabled, certain (IP-based) local search heuristics (e.g. crossover, mutation and oneopt)
to improve the objective value of solutions’ found are disabled as well. Enabling these might
allow to further reduce the objective gap.

117

PERFORMANCE OVERVIEW OF FINAL VIRTUCAST SOLVER

Fat Tree IGen Torus

R
un

tim
e

[s
]

I II III IV IV

0
10

00
25

00

I II III IV IV

0
10

00
25

00
●

●

●

I II III IV IV

0
10

00
25

00

H
eu

ri
st

ic
R

un
tim

e
[s

]

●

I II III IV IV

0
20

00
60

00

●

I II III IV IV

0
50

0
15

00

●●

●

●

●

●

I II III IV IV

0
50

0
15

00

O
bj

.G
ap

[%
]

●

0
1

2
3

4
5

6

I II III IV IV

●

●

●

0
1

2
3

4

I II III IV IV

●●●

●

0
1

2
3

4

I II III IV IV

D
ua

lB
ou

nd
Im

pr
ov

.[
%

]

● ●● ●●

I II III IV IV

0
1

2
3

4
5

6

●
● ● ●

I II III IV IV

0.
0

0.
5

1.
0

1.
5

●
●

●

I II III IV IV

0
1

2
3

4
5

Figure 13.1.: Overview of the performance of the final VirtuCast solver on the different topolo-
gies.

118

14. Evaluation of alternative
Algorithms

Having discussed the results of the final VirtuCast solver in Section 13, the performance of al-
ternative solution approaches is discussed in this section. The alternative solution approaches
considered are utilizing the GreedySelect heuristic (see Section 14.1), solving IP formula-
tion A-CVSAP-MCF (see Section 14.2) and using the VirtuCast solver with SCIP’s heuristics
only (see Section 14.3).

14.1. GreedySelect
We begin by considering the GreedySelect heuristic, which was implemented in C++ (as part
of the VirtuCast solver). As the heuristic is of a combinatorial nature and does not use ran-
domization, the heuristic is called exactly once for all the instances considered in Section 13.
The heuristic’s performance across the different topologies is depicted in Figure 14.1.

As for each graph size fifteen instances are considered, we first note that the heuristic finds
a feasible solution on all fat tree instances, on nearly all IGen instances and fails to produce
more than one solution of 3D torus instances. As on 3D torus instances at most a single
solution is found, the singular results on this topology will not be discussed.

Figure 14.1 furthermore depicts the objective gap with respect to the best dual bound es-
tablished in the experiments of Section 13. While on fat tree instances the median objective
gap after pruning lies around 40%, the median objective gap (for the instances on which so-
lutions were found) on IGen instances drops from around 17% to below 10% on larger graph
sizes. Importantly, to obtain solutions with an objective gap below 100% on fat tree instances,
the usage of Algorithm PruneSteinerNodes is necessary. In contrast, on IGen instances an
objective gap below 30% can be observed, when no Steiner nodes are pruned.

The runtime of the GreedySelect heurisitc is subdivided into the runtime of the heuristic
itself and the runtime consumed by Algorithm PruneSteinerNodes. Similar to the exponen-
tial growth of runtimes of the LP-based heuristics (cf. Figure 12.8), the runtime of Algo-
rithm GreedySelect grows nearly exponentially in the graph size. While this does not con-
tradict the polynomial runtime (see discussion in Section 12.3.3 and Observation 12.4) no
distinct runtime advantage can be observed, as for the LP-based heuristics generally a very
similar runtime can be observed on both fat tree and IGen instances (cf. Figure 12.8).

While the above presented results must not be seen as a general indicator for the inherent
weakness of combinatorial heuristics, they show that the runtime performance of the LP-
based heuristics is actually competetive. Even though the runtime of GreedySelect could
be substantially reduced by only considering a fraction of inactive Steiner nodes to open,

119

combinatorial heuristics may still fail to reliably generate feasible solutions without allowing
for path reconfigurations.

14.2. Performance of Formulation A-CVSAP-MCF
The main results of the evaluation of the IP formulation A-CVSAP-MCF, which was solved
using CPLEX, are presented in Figure 14.2. Note that no results for graph size V are pre-
sented. This is due to the fact that GLPK (see Section 4.3 for the ‘implementation’) fails to
generate executable .lp files for graph sizes of V as these require multiple gigabyte of storage.
Nevertheless, the results obtained on graph sizes I to IV allow to draw qualitative conclusions
regarding the applicability of formulation A-CVSAP-MCF. CPLEX was run using default
parameters, making all of the 16 GB of physical RAM available to it. As for the VirtuCast
experiments of Section 13, we limit the runtime to one hour.

In the top two rows of Figure 14.2 the number of instances for which a solution was found
and the number of instances for which the root relaxation could be computed are depicted. Im-
portantly, due to the number of variables and constraints required in the multi-commodity flow
formulation, CPLEX fails to solve the root relaxation on multiple fat tree instances of graph
sizes III and IV and on some 3D torus instances of graph size IV. While this does not suffice
to computationally substantiate the weakness of the formulation, it shows the inapplicability
to solve instances of these topologies and graph sizes within reasonable time.

To establish the computational weakness of formulation A-CVSAP-MCF and vice versa
argue for the computational strength of formulation IP-A-CVSAP, the dual bound gap is also
depicted in Figure 14.2. In this case, the dual bound gap is computed by pDV C´DMCF q{DV C ,
where DV C denotes the best dual bound obtained by the VirtuCast solver and DMCF denotes
the best dual bound obtained by solving formulation A-CVSAP-MCF. Thus, the dual bound
gap measures the relative distance of the A-CVSAP-MCF’s dual bound to the dual bound es-
tablished by IP-A-CVSAP. While the dual bound gap on 3D torus instances is relatively small,
its median lies around 5% on IGen and between 9% and 20% on fat tree instances (for the
instances where a dual bound could be established by CPLEX). This is in stark contrast to Ob-
servation 13.1, namely that the relative distance of the optimal solution’s objective to the root
relaxation lies below 6% when using formulation IP-A-CVSAP. We therefore conclude, that
formulation IP-A-CVSAP is indeed (computationally) stronger than formulation A-CVSAP-
MCF.

14.3. VirtuCast with SCIP’s Heuristics
Lastly, to motivate the development of the LP-based heuristics defined in Section 8, experi-
ments have been conducted using the VirtuCast solver, such that all of SCIP’s heuristics are
enabled, while none of the LP-based heuristics of Section 8 are included. For ensuring com-
parability, experiments were run on the same set of instances as used in Section 13 and using
the same separation and branching parameters. Additional to including all of SCIP’s heuris-
tics, the heuristic setting aggressive is used, such that the frequency of heuristics is halved and

120

heuristics are called twice as much. Again, the runtime limit is set to one hour.
Figure 14.3 presents the results obtained by using the VirtuCast solver in combination with

SCIP’s heuristics. Considering the runtime consumed by SCIP’s heuristics, we observe a
similar runtime allocation as during the final VirtuCast solver on fat tree instances, while on
IGen instances the runtime spent in heuristics is lower and on 3D torus instances exceeds the
runtime using the final VirtuCast solver (cf. Figure 13.1.

Considering the objective gap that is achieved, it can be observed that for graph sizes I and
II a similar performance is obtained (cf. Figure 13.1), while beginning with graph size III the
objective gap considerably worsens. For instances of graph size IV and V, for most instances
no solution can be obtained anymore.

With respect to the improvement of the dual bound (see Figure 14.3), we observe a slight,
but general, performance degradation across all topologies and instances (cf. Figure 13.1).

Without performing an in-depth analysis of which heuristics were most effective during the
experiments, we note that SCIP’s default heuristics fail to reliably generate solutions across all
topologies. Furthermore, if solutions are found for instances of graph size IV these solutions
may exhibit objective gaps as large as 100%.

121

PERFORMANCE OF ALGORITHM GREEDYSELECT

Fat Tree IGen Torus

So
lu

tio
ns

fo
un

d

I II III IV V

1
5

9
13

I II III IV V

1
5

9
13

I II III IV V

1
5

9
13

O
bj

.G
ap

B
ef

or
e

Pr
un

in
g

[%
]

I II III IV V

0
10

0
20

0
30

0

●

●

●

●●

●

I II III IV V

10
30

50
70

I II III IV V

30
50

70

O
bj

.G
ap

A
ft

er
Pr

un
in

g
[%

]

I II III IV V

0
20

40
60 ●

●

●●

I II III IV V

5
15

25

I II III IV V

25
30

35
40

R
un

tim
e

[s
]

I II III IV V

<
1

5
20

10
0

I II III IV V

5
20

10
0

50
0

I II III IV V

<
1

5
20

R
un

tim
e

Pr
un

e
[s

]

●●●

●● ●

●●

●●

I II III IV V

0.
02

0.
50

10
.0

0

●

●

I II III IV V

0.
5

2.
0

10
.0

50
.0

I II III IV V

0.
02

0.
20

2.
00

Figure 14.1.: Performance of the GreedySelect heuristic on all instances that were considered
in Section 13.

122

PERFORMANCE OF FORMULATION A-CVSAP-MCF

Fat Tree IGen Torus

So
lu

tio
ns

Fo
un

d

I II III IV

1
5

9
13

I II III IV
1

5
9

13
I II III IV

1
5

9
13

R
oo

tR
el

ax
at

io
ns

C
om

pu
te

d

I II III IV

1
5

9
13

I II III IV

1
5

9
13

I II III IV

1
5

9
13

O
bj

.G
ap

[%
] ●

5
10

20
50

I II III IV

2
5

10
50

I II III IV

<
0.

1
0.

5
2

5
20

I II III IV

D
ua

lB
ou

nd
G

ap
[%

]

●

●●●

5
10

15
25

I II III IV

●● ●●●

2
5

20
50

I II III IV

●

●

●

<
0.

1
0.

2
0.

5

I II III IV

Figure 14.2.: Performance of formulation A-CVSAP-MCF, which is solved using CPLEX, on
the instances of graph size I-IV that were considered in Section 13.

123

PERFORMANCE OVERVIEW OF VIRTUCAST WITH SCIP’S HEURISTICS

Fat Tree IGen Torus

R
un

tim
e

[s
]

I II III IV IV

0
10

00
25

00

I II III IV IV

0
10

00
25

00
●●

●

●
●

I II III IV IV

0
10

00
25

00

H
eu

ri
st

ic
R

un
tim

e
[s

]

●

●

●

I II III IV IV

0
50

0
15

00
25

00

●

●

●

●

I II III IV IV

0
20

0
60

0
10

00

●●●

●

●

●

I II III IV IV

0
10

00
20

00

O
bj

.G
ap

[%
]

●
●
●

<
0.

1
1

10
10

0
∞

I II III IV IV

●●● ●●

<
0.

10
.2

0.
5

1
2

5
∞

I II III IV IV

●●●

●
●
●

●

●
●

<
0.

1
1

5
50

I II III IV IV

D
ua

lB
ou

nd
Im

pr
ov

.[
%

]

●● ●● ●●

I II III IV IV

0
1

2
3

4
5

●

I II III IV IV

0.
0

0.
4

0.
8

1.
2

●

●

I II III IV IV

0
1

2
3

4

Figure 14.3.: Overview of the performance of the VirtuCast solver without the LP-based
heuristics presented in Section 8, but with all of SCIP’s heuristics activated, on the instances
that were considered in Section 13.

124

Part V.

Conclusion

15. Related Work

In this section both theoretical and practical related work is shortly summarized. One very im-
portant theoretical result we want to highlight was shown by Molnar in [molnar2011hierarchies].
In his work, Molnar considers classes of spanning tree problems and their underlying solution
structure. Without deriving algorithms for solving the considered problems, Molnar proves
that (directed) acyclic graphs are not sufficient to solve these problems. This result also ap-
plies to CVSAP and underlines the necessity of using the novel Algorithm Decompose to
obtain paths, as the result of any single-commodity flow formulations may not be acyclic.

In the following in Section 15.1 related work considering the applicability of CVSAP is
summarized, that was not discusses before. In Section 15.2 further connections to other opti-
mization problems are mentioned. We conclude in Section 15.3 by pointing towards literature
related to Integer Programming formulations that were not covered before.

15.1. Applicability of CVSAP
The conceptually most related works are the ones of Banerjee et al. on efficient overlay mul-
ticast networks [Ban+03] and the Flow Streaming Cache Placement Problem of Oliviera and
Pardalos (see discussion in Section 1.2.1). Banerjee et al. consider the distribution of mul-
ticast stations in an existing network to deploy overlay multicast functionality [Ban+03]. As
they consider both flexible processing locations and degree-bounds their model is closely re-
lated to CVSAP. They propose an Integer Programming formulation in which however all
nodes must be connected and therefore no flexibility is included.

In different contexts, the observation was made that multicasting and aggregation can be
efficiently implemented by utilizing only a subset of nodes for in-network processing. For ex-
ample Shi showed in [Shi01] the general applicability of selecting only a few processing nodes
for multicasting. Similarly, [KVM02] considered overlay networks for multicasting and ar-
rived at the conclusion that even by randomly placing processing functionality on only a few
nodes the traffic is only increased by 50%. In the context of multicast routing in the optical
domain [PLK10] considers sparse-splitting networks and shows that already few multicast-
enabled optical routers suffice. With respect to the applicability of our model to all-optical
multicast, we note that Rouskas specifically considers energy loss when wavelengths are dis-
tributed using passive splitters [Rou03]. Based on the limited number of outgoing connections
we allow for in the multicast variant, the selection of splitting locations can be modeled using
CVSAP.

126

15.2. Related Theoretical Problems
Besides the connections to Connected Facility Location, the Steiner Arborescence Problem
and the Degree-Constrained Node Weighted Steiner Tree Problem that have been established
in Section 3, there are several other related problems.

Segev first introduced the Node-Weighted Steiner Tree Problem [Seg87], which is closely
related to Prize-Collecting Steiner Tree Problems (PCSTP). Segev formulated the problem in
the following way: given a set of terminals that must be connected, negative costs for non-
terminal nodes and positive edge costs, find a Steiner Tree of whose cost, i.e. the sum of node
and edge costs which are included, is minimal.

Several different variants of the PCSTP are considered by Johnson et al. in [JMP00]. The
original‘Goemanns-Williamson’ problem formulation asks for a minimal cost Steiner Tree
where nodes not included increase the cost while in contrast the net worth maximization vari-
ant asks for finding a Steiner Tree such that for each included node a (beneficial) prize is
paid, while using edges within the Steiner tree induces costs. Another interesting variant is
the budget variant, in which a Steiner Tree of (edge) costs less than a certain budget shall be
constructed, that maximizes the prizes collected for connected nodes. Note that the formu-
lation of Segev differs to the PCSTP as he asks for a set of terminals, that must be included
[Seg87]. The PCSTP has several applications in network design, such as e.g. designing optical
backbone networks [CRR01].

Bauer and Varma considered already in 1995 the degree-constrained Steiner Tree Problem
for multicasting applications in ATM networks and developed a set of heuristics to solve it
[BV95]. In 1997, Jia and Wang have introduced the group multicast routing problem, in which
the task is to find a multicast tree for each terminal towards all other terminals, such that the
cost is minimal while edge capacities are not violated [JW97]. However, the authors only
study an heuristic.

While CVSAP allows for arbitrary hierarchies, Aardal et al. introduced in [ACS99] the
hierarchical facility location problem. In this problem, the task is to connect each terminal via
a path of (open) locations such that a facility of level i can only forward its information to a
node of facility i` 1 and so forth. Interestingy, under the assumption of stringent hierarchies,
approximation algorithms are obtained by considering path decompositions.

15.3. Integer Programming Formulations
Integer Programming has successfully been applied to solve many different types of Steiner
Tree Problems (see e.g. Koch et al. [KMV01]). Several different formulations have been pro-
posed [GM93; Pol03] and the strength of these formulations is well studied [CT01; PVD01].
We note that the strength of formulations is formally defined by mappings between the cor-
responding solution spaces, i.e. polyhedra, and (strict) subset relations (see [BW05] for an
introduction).

127

16. Summary of Results & Future
Work

In this section, the most important results and contributions are summarized. Where applica-
ble, possible avenues for future work are outlined.

CVSAP Definition and Model

In Section 2.2 the first concise, graph-theoretic definition for CVSAP is given. While not
a contribution in its own right, we note that the previous attempt to formalize a variant of
CVSAP by Oliveira and Pardalos [OP11] was inherently flawed (see [RS13b] for a discus-
sion).

As shortly discussed in Section 15, price-collecting variants of the Steiner Tree Problem
can be used to model network design problems. We note that especially the budgeted variant,
where the allows costs for opening Steiner nodes is limited, may be of importance for planning
the deployment of services under strict monetary restrictions. Furthermore, net worth variants
may be of importance e.g. in geo-replicated services or caches: while costs are associated
with installing processing functionality and using edges, by connecting terminals prizes can
be collected as customers will e.g. pay for the service. We only note that this net worth variant
can be easily modeled using the formulation IP-A-CVSAP by attributing negative costs (the
prices) with the edges from the super source towards the terminals and dropping the constraint,
that each terminal must receive one unit of flow.

Inapproximability Result for CVSAP

While conceptually easy to grasp based on the edge capacities, the Theorem 2.8 is instrumental
for not trying to obtain approximation algorithms and instead focussing on exact or heuristic
algorithms.

To complete the discussion of the computational complexity of the variants, it might be of
interest to prove the inapproximability of CVSTP or NVSAP, if possible.

Approximation Algorithms for Variants

In Section 3 for three of the five CVSAP approximation algorithms are obtained. Even though
the obtained approximation algorithms rely on reductions to known approximation algorithms,
the found reductions might be of interest to other related optimization problems as well. For
example Algorithm Leafify shows how any DNSTP solution can be converted into a DNSTP
solution, in which terminals are leaves.

128

VirtuCast IP Formulation IP-A-CVSAP

While the formulation A-CVSAP-MCF relies on a few simple insights and models each path
explicitly, the formulation IP-A-CVSAP employed in the VirtuCast algorithm relies on a com-
pact single-commodity flow. As shown in the computational evaluation (see Sections 13 and
14.2) the VirtuCast formulation significantly outperforms the multi-commodity flow formula-
tion and only enables solving realistically sized instances.

While in Observation 13.1 the computational strength of formulation IP-A-CVSAP is estab-
lished, the strength of the formulations was not formally compared by considering polyhedral
inclusions (cf. Section 15.3).

Even though the formal proof that IP-A-CVSAP is a stronger formulation than A-CVSAP-
MCF might not be necessary based on the results of the computational evaluation, we note
that especially on fat tree instances of graph sizes larger than I, the improvement of the dual
bound is negligible. Since the fat tree topologies are very dense, these might indeed pose
computationally hard instances. Nonetheless, based on the very regular structure of fat trees,
it could be possible to derive a special set of cuts to improve the performance.

Algorithm Decompose

Arguably the main contribution of this thesis is the novel Algorithm Decompose, which allows
to recover a feasible virtual arborescence from a solution to IP-A-CVSAP, even though the
(flow) solution might contain cycles and arbitrary hierarchies. Coupled together with formu-
lation IP-A-CVSAP, the VirtuCast algorithm is obtained.

LP-Based Heuristics

In Section 8 three different types of LP-based heuristics are presented, namely GreedyDiving,
MultipleShots and FlowDecoRound. In the extensive computational evalutation in Section 12
the performance of these heuristics (with their derived variants) is evaluated. The first impor-
tant established result is the high efficiency in constructing solutions (except for FlowDeco-
Round). Secondly, Observations 12.2 and 12.3 establish a runtime-quality trade-off accross
nearly all topologies and graph sizes. Based on this trade-off, different heuristics may be cho-
sen depending on the time available to obtain a solution. Lastly, while requiring the highest
runtime, the GreedySelect heuristic reliably finds the best solutions across all instances and
graph sizes.

VirtuCast Solver

By incorporating the LP-based heuristics into the VirtuCast algorithm, a solver is obtained
that outperforms all other considered solution approaches (see Section 14). Using this solver,
all considered instances are solved to less than 6% within optimality and a median gap of less
than 1.5% can be observed on IGen and 3D torus instances.

129

Bibliography

[Ach07] Tobias Achterberg. “Constraint Integer Programming”. PhD thesis. TU Berlin,
2007.

[Ach09] Tobias Achterberg. “SCIP: solving constraint integer programs”. In: Mathemati-
cal Programming Computation 1.1 (2009), pp. 1–41.

[ACS99] Karen Aardal, Fabian A Chudak, and David B Shmoys. “A 3-approximation al-
gorithm for the k-level uncapacitated facility location problem”. In: Information
Processing Letters 72.5 (1999), pp. 161–167.

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A scalable, com-
modity data center network architecture”. In: ACM SIGCOMM Computer Com-
munication Review. Vol. 38. 4. ACM. 2008, pp. 63–74.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms and Applications. Prentice Hall, 1993, pp. I–XV, 1–846. ISBN:
978-0-13-617549-0.

[And+05] Thomas Anderson et al. “Overcoming the Internet impasse through virtualiza-
tion”. In: Computer 38.4 (2005), pp. 34–41.

[Ban+03] Suman Banerjee et al. “Construction of an efficient overlay multicast infrastruc-
ture for real-time applications”. In: INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications. IEEE Societies.
Vol. 2. IEEE. 2003, pp. 1521–1531.

[BH09] Luiz André Barroso and Urs Hölzle. “The datacenter as a computer: An intro-
duction to the design of warehouse-scale machines”. In: Synthesis Lectures on
Computer Architecture 4.1 (2009), pp. 1–108.

[BLM13] Andreas Bley, Ivana Ljubić, and Olaf Maurer. “Lagrangian decompositions for
the two-level FTTx network design problem”. In: EURO Journal on Computa-
tional Optimization 1.3-4 (2013), pp. 221–252.

[BV95] Fred Bauer and Anujan Varma. “Degree-constrained multicasting in point-to-
point networks”. In: INFOCOM’95. Fourteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Bringing Information to People.
Proceedings. IEEE. IEEE. 1995, pp. 369–376.

[BW05] Dimitris Bertsimas and Robert Weismantel. Optimization over Integers. Dynamic
Ideas, 2005.

[CB10] NM Chowdhury and Raouf Boutaba. “A survey of network virtualization”. In:
Computer Networks 54.5 (2010), pp. 862–876.

130

[CCL09] Alysson M Costa, Jean-François Cordeau, and Gilbert Laporte. “Models and
branch-and-cut algorithms for the Steiner tree problem with revenues, budget
and hop constraints”. In: Networks 53.2 (2009), pp. 141–159.

[Cha+98] Moses Charikar et al. “Approximation algorithms for directed Steiner problems”.
In: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algo-
rithms. Society for Industrial and Applied Mathematics. 1998, pp. 192–200.

[Cos+12] Paolo Costa et al. “Camdoop: Exploiting In-network Aggregation for Big Data
Applications”. In: Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2012.

[Cra+03] Chuck Cranor et al. “Gigascope: A Stream Database for Network Applications”.
In: Proc. ACM SIGMOD International Conference on Management of Data.
2003, pp. 647–651.

[CRR01] Suzana A Canuto, Mauricio GC Resende, and Celso C Ribeiro. “Local search
with perturbations for the prize-collecting Steiner tree problem in graphs”. In:
Networks 38.1 (2001), pp. 50–58.

[CT01] Sunil Chopra and Chih-Yang Tsai. “Polyhedral approaches for the Steiner tree
problem on graphs”. In: COMBINATORIAL OPTIMIZATION-DORDRECHT- 11
(2001), pp. 175–202.

[DCX03] Min Ding, Xiuzhen Cheng, and Guoliang Xue. “Aggregation tree construction in
sensor networks”. In: Vehicular Technology Conference, 2003. VTC 2003-Fall.
2003 IEEE 58th. Vol. 4. IEEE. 2003, pp. 2168–2172.

[Eis+10] Friedrich Eisenbrand et al. “Connected facility location via random facility sam-
pling and core detouring”. In: Journal of Computer and System Sciences 76.8
(2010), pp. 709–726.

[Fuc03] Bernhard Fuchs. “A note on the terminal Steiner tree problem”. In: Information
Processing Letters 87.4 (2003), pp. 219–220.

[GLS] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. 1988.

[GM93] Michel X Goemans and Young-Soo Myung. “A catalog of Steiner tree formula-
tions”. In: Networks 23.1 (1993), pp. 19–28.

[Her+07] Christian Hermsmeyer et al. “Ethernet aggregation and core network models for
effcient and reliable IPTV services”. In: Bell Labs Technical Journal 12.1 (2007),
pp. 57–76. ISSN: 1538-7305.

[HHR13] Ludovic Henrio, Fabrice Huet, and Justine Rochas. “An Optimal Broadcast Algo-
rithm for Content-Addressable Networks”. In: Principles of Distributed Systems.
Springer, 2013, pp. 176–190.

[Hu+04] X-D Hu et al. “Multicast routing and wavelength assignment in WDM networks
with limited drop-offs”. In: INFOCOM 2004. Twenty-third AnnualJoint Confer-
ence of the IEEE Computer and Communications Societies. Vol. 1. IEEE. 2004.

131

[JMP00] David S. Johnson, Maria Minkoff, and Steven Phillips. “The prize collecting
Steiner tree problem: theory and practice”. In: Proceedings of the eleventh an-
nual ACM-SIAM symposium on Discrete algorithms. SODA ’00. San Francisco,
California, USA, 2000, pp. 760–769.

[JW97] Xiaohua Jia and Lusheng Wang. “A group multicast routing algorithm by us-
ing multiple minimum Steiner trees”. In: Computer communications 20.9 (1997),
pp. 750–758.

[KEW02] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. “Modelling data-
centric routing in wireless sensor networks”. In: IEEE infocom. Vol. 2. 2002,
pp. 39–44.

[KM98] Thorsten Koch and Alexander Martin. “Solving Steiner tree problems in graphs
to optimality”. In: Networks 32.3 (1998), pp. 207–232.

[KMV01] Thorsten Koch, Alexander Martin, and Stefan Voß. “SteinLib: An updated library
on Steiner tree problems in graphs”. In: COMBINATORIAL OPTIMIZATION-
DORDRECHT- 11 (2001), pp. 285–326.

[KV12] B Bernhard H Korte and Jens Vygen. Combinatorial optimization. Springer,
2012.

[KVM02] Fernando Kuipers and Piet Van Mieghem. “MAMCRA: a constrained-based mul-
ticast routing algorithm”. In: Computer Communications 25.8 (2002), pp. 802–
811.

[LR04] Abilio Lucena and Mauricio GC Resende. “Strong lower bounds for the prize
collecting Steiner problem in graphs”. In: Discrete Applied Mathematics 141.1
(2004), pp. 277–294.

[MG07] Jiřı́ Matoušek and Bernd Gärtner. Understanding and using linear programming.
Springer, 2007.

[Nar+13] Srinivas Narayana et al. “Joint Server Selection and Routing for Geo-Replicated
Services”. In: Proc. Workshop on Distributed Cloud Computing (DCC). 2013.

[OP11] CarlosA.S. Oliveira and PanosM. Pardalos. “Streaming Cache Placement”. In:
Mathematical Aspects of Network Routing Optimization. Springer Optimization
and Its Applications. Springer New York, 2011, pp. 117–133. ISBN: 978-1-4614-
0310-4.

[PLK10] Ju-Won Park, Huhnkuk Lim, and JongWon Kim. “Virtual-node-based multicast
routing and wavelength assignment in sparse-splitting optical networks”. In: Pho-
tonic Network Communications 19.2 (2010), pp. 182–191.

[Pol03] Tobias Polzin. “Algorithms for the Steiner problem in networks”. PhD thesis.
Universitätsbibliothek, 2003.

[PVD01] Tobias Polzin and Siavash Vahdati Daneshmand. “A comparison of Steiner tree
relaxations”. In: Discrete Applied Mathematics 112.1 (2001), pp. 241–261.

132

[Quo+09] B. Quoitin et al. “IGen: Generation of router-level Internet topologies through
network design heuristics”. In: Proc. 21st International Teletraffic Congress (ITC).
2009, pp. 1–8.

[Rav+01] R Ravi et al. “Approximation algorithms for degree-constrained minimum-cost
network-design problems”. In: Algorithmica 31.1 (2001), pp. 58–78.

[Rou03] George N Rouskas. “Optical layer multicast: rationale, building blocks, and chal-
lenges”. In: Network, IEEE 17.1 (2003), pp. 60–65.

[RS13a] Matthias Rost and Stefan Schmid. CVSAP-Project Website. http://www.
net.t-labs.tu-berlin.de/˜stefan/cvsap.html, 2013.

[RS13b] Matthias Rost and Stefan Schmid. The Constrained Virtual Steiner Arborescence
Problem: Formal Definition, Single-Commodity Integer Programming Formula-
tion and Computational Evaluation. Tech. rep. arXiv, 2013.

[RS13c] Matthias Rost and Stefan Schmid. “VirtuCast: Multicast and Aggregation with
In-Network Processing”. In: Principles of Distributed Systems. Ed. by Roberto
Baldoni, Nicolas Nisse, and Maarten Steen. Vol. 8304. Lecture Notes in Com-
puter Science. Springer International Publishing, 2013, pp. 221–235.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. Wiley, 1998.

[Seg87] Arie Segev. “The node-weighted steiner tree problem”. In: Networks 17.1 (1987),
pp. 1–17.

[Shi01] Sherlia Shi. “A Proposal for A Scalable Internet Multicast Architecture”. In:
Washington Universtiy. 2001.

[Voß06] Stefan Voß. “Handbook of optimization in telecommunications”. In: ed. by Mauri-
cio GC Resende and Panos M Pardalos. Spinger Science + Business Media, New
York, 2006. Chap. 18.

[WS13] Yang Wang and Wei Shi. “On Scheduling Algorithms for MapReduce Jobs in
Heterogeneous Clouds with Budget Constraints”. In: Principles of Distributed
Systems. Springer, 2013, pp. 251–265.

[CPL13] CPLEX. http://www.cplex.com/. 2013.

[Eur12] European Telecommunications Standards Institute. “Network Functions Virtual-
isation - Introductory White Paper”. In: SDN and OpenFlow World Congress,
Darmstadt-Germany (2012).

[GNU13] GNU Linear Programming Kit. http://www.gnu.org/software/
glpk/glpk.html. 2013.

133

http://www.net.t-labs.tu-berlin.de/~stefan/cvsap.html
http://www.net.t-labs.tu-berlin.de/~stefan/cvsap.html
http://www.cplex.com/
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

	Introduction
	Model Outline
	Applications
	Overview
	Contribution

	Theory of CVSAP
	The Constrained Virtual Steiner Arborescence Problem
	Notation
	Definition of the Constrained Virtual Steiner Arborescence Problem
	Inapproximability of CVSAP
	Variants of CVSAP

	Approximation of CVSAP Variants
	8-Approximation of VSTP via CFLP
	Equivalence of VSAP and SAP
	Approximation of NVSTP via DNSTP

	Exact Algorithms for CVSAP
	A Multi-Commodity Flow Formulation
	Notation
	The MIP Model
	Implementation

	VirtuCast Algorithm
	The IP Model
	Flow Decomposition
	Runtime Analysis for Decompose
	Implementation

	Heuristics for CVSAP
	Overview and Common Algorithms
	Employed Known Algorithms and Definitions
	Local Search Procedure PruneSteinerNodes

	Combinatorial Heuristic GreedySelect
	Synopsis of Algorithm GreedySelect
	Runtime of Algorithm GreedySelect

	LP-Based Heuristics
	Heuristic FlowDecoRound
	Algorithm PartialDecompose
	Algorithm Virtual Capacitated Prim Connect
	Abstract Interface to LP Solver
	Greedy Diving Heuristics
	Multiple Shots Heuristics
	Runtime Considerations

	Computational Evaluation
	Outline of the Computational Evaluation
	Notation & Measures
	General Computational Setup

	Topologies
	Selected Topologies
	Generation Parameters
	Fat Tree
	3D Torus
	IGen

	Separation & Branching Parameters
	Considered Parameters
	General Methodoloy
	Initial Parameter Validation
	Final Parameter Validation
	Final Separation & Branching Parameters

	Performance of LP-Based Heuristics
	Methodology
	Computational Setup
	Overview of Results
	Detailed Topology-Dependent Analysis

	Performance of the Final VirtuCast Solver
	Evaluation of alternative Algorithms
	GreedySelect
	Performance of Formulation A-CVSAP-MCF
	VirtuCast with SCIP's Heuristics

	Conclusion
	Related Work
	Applicability of CVSAP
	Related Theoretical Problems
	Integer Programming Formulations

	Summary of Results & Future Work
	Bibliography

