
‘Formal Virtu’ Project Overview
Temporal VNet Embedding and

Virtualized In-Network Processing

VINO Meeting February 2014

Matthias Rost

Technische Universität Berlin

February 5th, 2014
TU Berlin

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 1

Overview

Virtual Network Embedding MIP Creator (VNetEMC)

Unified framework for VNet embedding MIPs

Virtualized In-Network Processing
Service deployment rather than VNet embedding
Applicable to multicast and aggregation communication

Temporal VNet Embedding
Scheduling of VNets, given temporal flexibilities & embedding
Applicable to other ‘embeddings’ as well

Virtual Network Embedding MIP Creator

VNetEMC Idea

Idea: Unified IO for VNet Embedding Experiments

Idea
Framework for generation & evaluation of VNet embedding MIPs
Unified XML input and output
Persistent storage of models and solutions

XML

Data &
Model

GMPL

Data

Model

LP file

Gurobi

CPLEX

Solver XML

Solution

Generation Evaluation

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 4

VNetEMC Model Types

Supported Models

VNet
directed / undirected
single resource for links and
nodes

Substrate
directed / undirected
capacitated / uncapacitated
links and nodes

Scenario = Objective +

Mapping
access control
disjoint node mappings
node placement restrictions

+

Flow Model
splittable
unsplittable
confluent

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 5

Virtualized In-Network Processing

Virtualized In-Network Processing

VNet Embedding vs. Service Deployment

VNet Embedding
Customer specifies VNet fully, i.e.

topology, resource requirements, locations, . . .

Service Deployment
Customer requests communication service between locations, without
specifying a topology for establishing the service.
Considered communication services: multicast & aggregation

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 7

Virtualized In-Network Processing

Communication Schemes: Multicast

processing = duplication + reroute

sender

receiver

receiver

receiver
processing node

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 8

Virtualized In-Network Processing

Communication Schemes: Multicast

processing = duplication + reroute

Figure: Hierarchy of processing nodes

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 8

Virtualized In-Network Processing

Communication Schemes: Aggregation

processing = merge + reroute

sender

receiver

processing node

sender

sender

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 9

Virtualized In-Network Processing

Communication Schemes: Aggregation

processing = merge + reroute

Figure: Hierarchy of processing nodes

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 9

Virtualized In-Network Processing

Problem Statement

Virtualization on the rise: SDN + NFV
How to compute virtual aggregation / multicasting trees?
Where to place in-network processing functionality?

Our Answer
New Model: Constrained Virtual Steiner Arborescence Problem
New Algorithm: VirtuCast

Objective: Jointly minimize . . .
bandwidth
number of processing nodes

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 10

Virtualized In-Network Processing Introductory Example

Introductory Example

Aggregation scenario
grid graph with 14 senders and one
receiver

Virtualized links
Flow can be routed along arbitrary
paths

receiver sender

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 11

Virtualized In-Network Processing Introductory Example

Without in-network processing: Unicast

Solution Method
minimal cost flow

Solution uses
41 edges
0 processing nodes

receiver sender

Figure: Unicast solution

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 12

Virtualized In-Network Processing Introductory Example

With in-network processing at all nodes

Solution Method
Steiner arborescence

Solution uses
16 edges
9 processing nodes

receiver

processing

sender

sender with
processingnode

Figure: Aggregation tree

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 13

Virtualized In-Network Processing Introductory Example

How to Trade-off?

vs.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 14

Virtualized In-Network Processing Introductory Example

Our Solution: CVSAP & VirtuCast

Solution uses
26 edges
2 processing
nodes

receiver

processing

sender

node

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 15

Virtualized In-Network Processing Introductory Example

Solution Structure

New Model
Constrained Virtual Steiner
Arboresence Problem (CVSAP)

Virtual Arborescence
directed tree towards receiver
sender are leaves
inner nodes represent processing
nodes
edges represent paths in
underlying network Figure: Virtual Arborescence

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 16

Definition of the
Constrained Virtual Steiner Arborescence Problem

Virtualized In-Network Processing Definition of CVSAP

Multicast , Aggregation

Multicasting scenario can be reduced onto the aggregation scenario
We only consider the aggregation scenario.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 18

Virtualized In-Network Processing Definition of CVSAP

Input to the Constained Virtual Steiner Arborescence
Problem

Graph

Directed Graph G = (VG ,EG)

Root r ∈ VG , i.e. single receiver
Terminals T ⊂ VG , i.e. sender
Steiner sites S ⊂ VG , i.e. potential processing locations

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 19

Virtualized In-Network Processing Definition of CVSAP

Input to the Constained Virtual Steiner Arborescence
Problem

Graph

Directed Graph G = (VG ,EG)

Root r ∈ VG , i.e. single receiver
Terminals T ⊂ VG , i.e. sender
Steiner sites S ⊂ VG , i.e. potential processing locations

Important
No processing functionality can be placed on non-Steiner nodes.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 19

Virtualized In-Network Processing Definition of CVSAP

Input to the Constained Virtual Steiner Arborescence
Problem

Graph

Directed Graph G = (VG ,EG)

Root r ∈ VG , i.e. single receiver
Terminals T ⊂ VG , i.e. sender
Steiner sites S ⊂ VG , i.e. potential processing locations

Important
No processing functionality can be placed on non-Steiner nodes.

Costs
for edges
for opening Steiner sites

Capacities
for edges
for Steiner sites & the root

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 19

Virtualized In-Network Processing Definition of CVSAP

Constrained Virtual Steiner Arborescence Problem

Definition
Find a Virtual Arborescence such that

terminals (and only terminals) are leaves,
non-Steiner sites are not contained ⇔ all inner nodes are
activated Steiner nodes, i.e. processing nodes, and
node and edge capacities hold,

minimizing
sum of edge costs + sum of installation costs

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 20

Applications

Virtualized In-Network Processing Applications

Applications

Network Application Technology, e.g.

m
ul

ti
ca

st ISP
service replication / cache
placement [10, 11]

middleboxes / NFV
+ SDN

backbone optical multicast [6] ROADM1 + SDH

all application-level multicast [16] different

ag
gr

eg
at

io
n sensor

network
value & message aggrega-
tion [4, 7]

source routing

ISP
network analytics: Gigascope
[3]

middleboxes / NFV
+ SDN

data center
big data / map-reduce: Cam-
doop [2]

SDN

1reconfigurable optical add/drop multiplexer
Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 22

Contributions

Contributions
Computational Complexity

CVSAP is inapproximable, unless P = NP
for weaker variants, approximation algorithms exist

Algorithms
VirtuCast: single-commodity flow IP with novel decomposition scheme
VirtuCast based heuristics
Multi-commodity flow IP
combinatorial heuristic

Computational Evaluation
three topologies with five graph sizes (225 instances overall)
objective gap after one hour: worst case: 6%; average: 2%

Publications
Master Thesis [12]
Joint work with Stefan Schmid: OPODIS 2013 & arXiv [14, 13]

Computational Complexity

Computational Complexity Variants

Computational Complexity I

Inapproximability of CVSAP
Finding a feasible solution is NP-complete.

Variants

Directed Undirected

edge and node capacities CVSAP CVSTP

node capacities NVSAP NVSTP

no capacities VSAP VSTP

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 26

Computational Complexity Approximation for Variants

Computational Complexity II

Approximation via related problems

Directed Undirected

CVSAP CVSTP

NVSAP NVSTP DNSTP

SAP VSAP VSTP CFLP

O(log |T |, log |T |)

O(log |T |) O(8)

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 27

Algorithms for CVSAP

Algorithms for CVSAP

Overview

VirtuCast: single-commodity flow IP formulation
solves CVSAP to optimality in non-polynomial runtime
allows trading-off runtime with solution quality
baseline for heuristics

VirtuCast based heuristics
yield high-quality solutions in polynomial time
high efficiency in finding solutions

Multi-commodity flow & combinatorial heuristic
generally way worse, not applicable ‘out of the box’

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 29

Algorithms for CVSAP VirtuCast

Single- vs. Multi-Commodity Flows

Single-commodity flow formulation
computes aggregated flow on edges independently of the origin
does not represent virtual arborescence

Figure: Single-commodity

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 30

Algorithms for CVSAP VirtuCast

Single- vs. Multi-Commodity Flows

Example: 6000 edges and 200 Steiner sites
Single-commodity: 6000 integer variables
Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity Figure: Multi-commodity

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 30

VirtuCast

Algorithms for CVSAP VirtuCast

VirtuCast Algorithm

Outline of VirtuCast
1 Solve single-commodity flow IP formulation.
2 Decompose IP solution into Virtual Arborescence.

How to
decompose?

(a) IP solution

→

(b) Virtual Arborescence

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 32

IP Formulation

Algorithms for CVSAP VirtuCast: IP Formulation

Extended Graph

Additional nodes

source o+

sinks o−r and o−S

Additional edges

o−r

o−S

o+

receiver

Steiner

sender

site

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 34

Algorithms for CVSAP VirtuCast: IP Formulation

IP Formulation I

minimize CIP(x , f) =
∑
e∈EG

ce fe+
∑
s∈S

csxs

subject to f (δ+Eext(v)) = f (δ−Eext(v)) ∀ v ∈ VG

f (δ+ER
ext

(W)) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

fe =1 ∀ e = (o+, t) ∈ ET+

ext

fe = xs ∀ e = (o+, s) ∈ ES+

ext

xs ∈{0, 1} ∀ s ∈ S
fe ∈Z≥0 ∀ e ∈ Eext

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 35

Algorithms for CVSAP VirtuCast: IP Formulation

Complete Formulation

minimize CIP(x , f) =
∑
e∈EG

ce fe+
∑
s∈S

csxs

subject to f (δ+Eext(v)) = f (δ−Eext(v)) ∀ v ∈ VG

f (δ+ER
ext

(W)) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

fe ≤usxs ∀ e = (s, o−S) ∈ ES−
ext

f(r ,o−r) ≤ur

fe ≤ue ∀ e ∈ EG

fe =1 ∀ e ∈ ET+

ext

fe = xs ∀ e = (o+, s) ∈ ES+

ext

xs ∈{0, 1} ∀ s ∈ S
fe ∈Z≥0 ∀ e ∈ Eext

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 36

Algorithms for CVSAP VirtuCast: IP Formulation

Connectivity Inequalities

∀ W ⊆ VG , s ∈W ∩ S 6= ∅. f (δ+ER
ext

(W)) ≥ xs

From each activated Steiner site, there exists a path
towards o−r .

Exponentially many constraints, but . . .
can be separated in polynomial time.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 37

Decomposition Algorithm

Algorithms for CVSAP VirtuCast: Decomposition Algorithm

Decomposing flow is non-trivial.

Flow solution is . . .
not a tree and
not a DAG [9].

Flow solution . . .
contains cycles and
represents arbitrary
hierarchies.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 39

Algorithms for CVSAP VirtuCast: Decomposition Algorithm

Outline of Decomposition Algorithm

Iterate
1 select a terminal t
2 construct path P from t towards o−r or o−S
3 remove one unit of flow along P
4 connect t to the second last node of P and remove t

After each iteration
Problem size reduced by one.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 40

Algorithms for CVSAP VirtuCast: Decomposition Algorithm

Outline of Decomposition Algorithm

Reduced problem must be feasible
Removing flow must not invalidate any connectivity inequalities.

Principle: Repair & Redirect
decrease flow on path edge by edge
if connectivity inequalities are violated

repair increment flow on edge to remain feasible
redirect choose another path from the current node

Theorem
Given an optimal solution, the Decompososition Algorithm computes a
Virtual Arborescence in time O

(
|VG |2 · |EG | · (|VG |+ |EG |)

)
.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 41

Algorithms for CVSAP VirtuCast: Decomposition Algorithm

Implementation

Overview over Implementation

VirtuCast is implemented in C++ using SCIP [1].
Separation of connectivity inequalities is implemented using the
Edmonds-Karp algorithm.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 42

VirtuCast Based Heuristics

Algorithms for CVSAP VirtuCast Based Heuristics

Overview VirtuCast Based Heuristics

FlowDecoRound: ∼ 50 % off optimum, runtime ∼ 20 seconds

based on (simple) flow decomposition and rounding

MultipleShot: ∼ 1-7 % off optimum, runtime up to ∼ 250 seconds
treats Steiner site opening variables as probabilities
iteratively tries to obtain a solution, recomputes LP if unsuccessful

1 connecting Steiner nodes using ‘Virtual Capacitated Prim Algorithm’
2 min-cost assignment of terminals to Steiner nodes

Greedy Diving: ∼ 0.5-3 % off optimum, runtime up to ∼ 1500 seconds
opens single best Steiner site until all Steiner sites’ variables are fixed
fixes edge variables afterwards
recomputes LP including separation procedures
complex fallback mechanisms

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 44

Algorithms for CVSAP VirtuCast Based Heuristics

Overview VirtuCast Based Heuristics

FlowDecoRound: ∼ 50 % off optimum, runtime ∼ 20 seconds

based on (simple) flow decomposition and rounding

MultipleShot: ∼ 1-7 % off optimum, runtime up to ∼ 250 seconds
treats Steiner site opening variables as probabilities
iteratively tries to obtain a solution, recomputes LP if unsuccessful

1 connecting Steiner nodes using ‘Virtual Capacitated Prim Algorithm’
2 min-cost assignment of terminals to Steiner nodes

Greedy Diving: ∼ 0.5-3 % off optimum, runtime up to ∼ 1500 seconds
opens single best Steiner site until all Steiner sites’ variables are fixed
fixes edge variables afterwards
recomputes LP including separation procedures
complex fallback mechanisms

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 44

Algorithms for CVSAP VirtuCast Based Heuristics

Overview VirtuCast Based Heuristics

FlowDecoRound: ∼ 50 % off optimum, runtime ∼ 20 seconds

based on (simple) flow decomposition and rounding

MultipleShot: ∼ 1-7 % off optimum, runtime up to ∼ 250 seconds
treats Steiner site opening variables as probabilities
iteratively tries to obtain a solution, recomputes LP if unsuccessful

1 connecting Steiner nodes using ‘Virtual Capacitated Prim Algorithm’
2 min-cost assignment of terminals to Steiner nodes

Greedy Diving: ∼ 0.5-3 % off optimum, runtime up to ∼ 1500 seconds
opens single best Steiner site until all Steiner sites’ variables are fixed
fixes edge variables afterwards
recomputes LP including separation procedures
complex fallback mechanisms

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 44

Algorithms for CVSAP VirtuCast Based Heuristics

Overview VirtuCast Based Heuristics

FlowDecoRound: ∼ 50 % off optimum, runtime ∼ 20 seconds

based on (simple) flow decomposition and rounding

MultipleShot: ∼ 1-7 % off optimum, runtime up to ∼ 250 seconds
treats Steiner site opening variables as probabilities
iteratively tries to obtain a solution, recomputes LP if unsuccessful

1 connecting Steiner nodes using ‘Virtual Capacitated Prim Algorithm’
2 min-cost assignment of terminals to Steiner nodes

Greedy Diving: ∼ 0.5-3 % off optimum, runtime up to ∼ 1500 seconds
opens single best Steiner site until all Steiner sites’ variables are fixed
fixes edge variables afterwards
recomputes LP including separation procedures
complex fallback mechanisms

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 44

Computational Evaluation

Computational Evaluation Topologies

Topologies

3D torus Fat tree

An ISP topology generated by IGen with 2400 nodes.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 46

Computational Evaluation Topologies

Instances

Generation Parameters
five graph sizes I-V
15 instances per graph size: different Steiner costs, different edge
capacities

Nodes Edges Steiner Sites Terminals
Fat tree 1584 14680 720 864
3D torus 1728 10368 432 864

IGen 4000 16924 401 800

Table: Largest graph sizes

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 47

Computational Evaluation Results

Objective Gap

Fat Tree IGen Torus

O
bj
.
G
ap

[%
]

●

0
1

2
3

4
5

6

I II III IV IV

●

●

●

0
1

2
3

4

I II III IV IV

●●●

●

0
1

2
3

4

I II III IV IV

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 48

Computational Evaluation Results

Dual Bound Improvement

Fat Tree IGen Torus

D
ua
lB

ou
nd

Im
pr
ov
.
[%

]

● ●● ●●

I II III IV IV

0
1

2
3

4
5

6

●
● ● ●

I II III IV IV

0.
0

0.
5

1.
0

1.
5

●
●

●

I II III IV IV

0
1

2
3

4
5

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 49

Computational Evaluation Results

Other approaches

Multi-commodity flow formulation
solved using CPLEX
fails to compute root relaxation for even medium sized instances
dual bound gaps: 5-20% (fat tree), 3-10% (IGen), 0.1-1% (3D torus)

Combinatorial Greedy Heuristic
only ‘reliable’ on fat tree and IGen instances, maximal 1 solved
instance on 3D torus instances
runtime ∼ 500 seconds on largest instances
gap ∼ 5-40%

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 50

Conclusion

Conclusion CVSAP Future Work

Future Work

Model Extensions
Prize-collecting variants
Generalize CVSAP for multiple concurrent multicast / aggregation
sessions.
Try to incorporate service-chaining (EU project UNIFY).

IP formulation
Try to derive further cuts or even facets for e.g. fat tree instances to
improve dual bound.

IP formulation
Try to derive further cuts or even facets for e.g. fat tree instances to
improve dual bound.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 52

Conclusion CVSAP Summary

Conclusion

Motivation
Network virtualization enables virtual multicasting / aggregation trees.
NFV enables placement of processing functionality.
Goals: Improve scalability or reduce costs.

Summary
Concise graph theoretic definition of CVSAP.
Algorithm to solve CVSAP: VirtuCast.
Computational Evaluation:

Feasible to solve realistically sized instances using VirtuCast.
Significant Improvement over naive multi-commodity flow IP.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 53

Conclusion CVSAP Summary

Discussion

Restriction of single-commodity flow model: no path semantics
iterative aggregation of flows
no control over path length / latency

Advantages
yields good solutions quickly
models multicast scenarios accurately
aggregation compression is limited (at each node)

Applications to BigFoot?
Can CVSAP be used to model workloads in private clouds?
If not, which model extensions are necessary?

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 54

Conclusion CVSAP Summary

Thanks for your attention (so far) :).

Project Homepage OPODIS ’13 Technical Report

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 55

www.net.t-labs.tu-berlin.de/~stefan/cvsap.html
arxiv.org/abs/1310.0346

Temporal Virtual Network Embedding Problem

Temporal VNet Embedding Problem Overview

Problem Statement

Temporal Virtual Network Embedding Problem (TVNEP)

VNet Requests have additional temporal specification (tsR , t
e
R ,dR)

Request R must be embedded in the interval [tsR , t
e
R]

with duration dR

Temporal flexibilities, if teR − tsR > dR , allow scheduling by provider

Objectives
Find embedding of requests and a schedule to . . .

maximize number of embedded requests
maximize earliness
maximize energy savings by disabling links / nodes
. . .

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 57

Temporal VNet Embedding Problem Overview

Contribution

Continuous-Time
Requests may be scheduled at arbitrary points in time
avoids discretization (errors)

MIP formulations
∆: represents state changes only (bad idea)
Σ: represent state changes explicitly (better idea)
cΣ: Σ-model using symmetry & state-space reductions (best idea)

Greedy Heuristic
based on cΣ-model

Publication
IPDPS 2014 [15], joint work with Stefan Schmid and Anja Feldmann

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 58

Applications

Temporal VNet Embedding Problem Overview

Applications

Data center
e.g. MapReduce cycles through different phases, traffic only during
30-60% of execution [17]
price incentives for customers and providers to allow for / harness
temporal flexibility [8]

Wide area networks
Google uses SDN in the WAN to connect data centers [5]
scheduling of bandwidth-intensive synchronizations

is necessary to achieve good utilization and resource isolation
is enabled by central SDN control

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 60

Temporal VNet Embedding Problem Models for the TVNEP

Overview of Models

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 61

Temporal VNet Embedding Problem Models for the TVNEP

Event Point Abstraction

event1 event2 event3 event4

state1 state2 state3

Event Order

Substrate

Local Mapping
on Substrate

event5 event6

state4 state5
State

R1

R2

R3

General approach
compute local mapping of Requests onto substrate
linearly order starts and ends of requests via mapping on event points
compute states and check feasibility

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 62

Temporal VNet Embedding Problem Models for the TVNEP

∆-Model

Idea
only compute state changes via conditional assignment

∆ei (Ns) =

+allocV (R1,Ns) , if start of R1 is mapped on ei

−allocV (R1,Ns) , if end of R1 is mapped on ei

...
+allocV (Rk ,Ns) , if start of Rk is mapped on ei

−allocV (Rk ,Ns) , if end of Rk is mapped on ei

substrate state si is computed inductively via

i∑
j=1

∆ei .

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 63

Temporal VNet Embedding Problem Models for the TVNEP

∆-Model: LP-Smearings!

MIP implementation of conditional assignment: big-M
∆ei (Ns) ≤+ allocV (R,Ns) + cS(Ns)(1− χ+

R1
(ei)) (1)

∆ei (Ns) ≥+ allocV (R,Ns)− cS(Ns)(1− χ+
R1

(ei)) · 2 (2)

∆ei (Ns) ≤− allocV (R,Ns) + cS(Ns)(1− χ−R1
(ei)) · 2 (3)

∆ei (Ns) ≥− allocV (R,Ns)− cS(Ns)(1− χ−R1
(ei)) (4)

LP-Smearings

assuming assignments to be 1/2, state changes can be set to ≤ 0 for
all resources and all events!
very bad relaxations in practice

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 64

Temporal VNet Embedding Problem Models for the TVNEP

Σ-Model

Insight
State allocations must be modeled more explicitly.

aR : S × (VS ∪ ES)→ R≥0

Σ(R, ei) =
∑

j=1,...,i

χ+
R (ej ,R)−

∑
j=i ,...,|E|

χ−R (ej ,R)

asi (R,Ns) ≥ allocV (R,Ns)− cV(Ns) · (1− Σ(R, ei))

cS(r) ≥
∑
R∈R

aR(si , r)

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 65

Temporal VNet Embedding Problem Models for the TVNEP

cΣ-Model

Compactification
Partial order on the end of requests suffices.
Yields symmetry reduction and state-space reduction.

event1 event2 event3

state1 state2

Event Order

Substrate

Local Mapping
on Substrate

event4

state3
State

R1

R2

R3

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 66

Optimizations: Dependency Graph User Cuts

Temporal VNet Embedding Problem Optimization: Dependency Graph User Cuts

Dependency Graph User Cuts

Dependency Graph
Nodes are abstract start and end events of requests.
Edge (u, v) exists, if u must take place before v .
Dependency graph is a DAG.

State-space reduction
If u is preceeded by n abstract events, u cannot be mapped on the
first n event points.
Analogously for trailing event points.

User Cuts
If u is mapped on event ei , then all trailing abstract events must
happen after ei .
Improves relaxation.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 68

Computational Evaluation

Temporal VNet Embedding Problem Computational Evaluation

Computational Evaluation: One-day workload

Scenario
consider scenarios with 20 requests over time
poisson inter-arrival time
weibull duration (heavy tailed)
node-mappings are fixed
link-mappings are not fixed
0, 30, 60, 90, 120, . . . , 300 minutes of flexibility

Task
Decide which requests to embed,
when to embed and
how to route the flow.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 70

Temporal VNet Embedding Problem Computational Evaluation

Objective Gap

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●●
●

●●●
● ●●●

●

ob
je

ct
iv

e
ga

p
[%

]

∆
Σ
cΣ

0 30 60 90 120 150 180 210 240 270 300

∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ

1
10

10
0

∞

1
10

10
0

∞

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 71

Temporal VNet Embedding Problem Computational Evaluation

Runtime

●●
●

●●●●

●●

●

●
●●●
●
●

●

●
●

●●

●

●
●

●●
●

●●●

●●
●

●

●
●

●

●

●●●
●

●●

●

●●●

●

●

●

●●

●●●

●

●

●●

●

●

● ●●

●

●

●

●●
●
●●

ru
nt

im
e

[s
]

∆
Σ
cΣ

0 30 60 90 120 150 180 210 240 270 300

∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ∆ ΣcΣ

1
10

10
0

36
00

1
10

10
0

36
00

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 72

Temporal VNet Embedding Problem Computational Evaluation

Benefit of Flexibility

● ●
●

30 90 150 240

0
10

30
50

im
pr

ov
em

en
t o

f o
bj

ec
tiv

e
[%

]

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 73

Temporal VNet Embedding Problem Computational Evaluation

Performance of Greedy Heuristic

0 60 120 210 300

−
20

−
10

0

re
la

tiv
e

pe
rf

or
m

an
ce

 o
f c

ΣH
 [%

]

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 74

Temporal VNet Embedding Problem Computational Evaluation

Discussion & Future Work

Future Work
Incorporate flexible duration of requests.
Allow for more complex scenarios: requests consider of request groups
and dependencies between them.
Develop heuristics for other objectives as well.
Evaluate our approach in conjunction with embedding heuristics.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 75

Temporal VNet Embedding Problem Computational Evaluation

References I

[1] T. Achterberg.
SCIP: Solving Constraint Integer Programs.
Mathematical Programming Computation, 1(1):1–41, 2009.

[2] P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea.
Camdoop: Exploiting In-network Aggregation for Big Data Applications.
In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2012.

[3] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: A Stream Database for Network Applications.
In Proc. ACM SIGMOD International Conference on Management of Data, pages 647–651,
2003.

[4] M. Ding, X. Cheng, and G. Xue.
Aggregation tree construction in sensor networks.
In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4,
pages 2168–2172. IEEE, 2003.

[5] S. J. et al.
B4: experience with a globally-deployed software defined wan.
In Proc. ACM SIGCOMM, pages 3–14, New York, NY, USA, 2013. ACM.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 76

Temporal VNet Embedding Problem Computational Evaluation

References II

[6] C. Hermsmeyer, E. Hernandez-Valencia, D. Stoll, and O. Tamm.
Ethernet aggregation and core network models for effcient and reliable IPTV services.
Bell Labs Technical Journal, 12(1):57–76, 2007.

[7] B. Krishnamachari, D. Estrin, and S. Wicker.
Modelling data-centric routing in wireless sensor networks.
In IEEE infocom, volume 2, pages 39–44, 2002.

[8] L. Mai, E. Kalyvianaki, and P. Costa.
Exploiting time-malleability in cloud-based batch processing systems.
In Proc. 7th LADIS, 2013.

[9] M. Molnár.
Hierarchies to Solve Constrained Connected Spanning Problems.
Technical Report lrimm-00619806, University Montpellier 2, LIRMM, 2011.

[10] S. Narayana, W. Jiang, J. Rexford, and M. Chiang.
Joint Server Selection and Routing for Geo-Replicated Services.
In Proc. Workshop on Distributed Cloud Computing (DCC), 2013.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 77

Temporal VNet Embedding Problem Computational Evaluation

References III

[11] C. Oliveira and P. Pardalos.
Streaming Cache Placement.
In Mathematical Aspects of Network Routing Optimization, Springer Optimization and Its
Applications, pages 117–133. Springer New York, 2011.

[12] M. Rost.
Optimal Virtualized In-Network Processing with Applications to Aggregation and Multicast.
Master’s thesis, Technische Universität Berlin, Germany, 2014.

[13] M. Rost and S. Schmid.
The Constrained Virtual Steiner Arborescence Problem: Formal Definition,
Single-Commodity Integer Programming Formulation and Computational Evaluation.
Technical report, arXiv, 2013.

[14] M. Rost and S. Schmid.
Virtucast: Multicast and aggregation with in-network processing.
In R. Baldoni, N. Nisse, and M. Steen, editors, Principles of Distributed Systems, volume
8304 of Lecture Notes in Computer Science, pages 221–235. Springer International
Publishing, 2013.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 78

Temporal VNet Embedding Problem Computational Evaluation

References IV

[15] M. Rost, S. Schmid, and A. Feldmann.
It’s about time: On optimal virtual network embeddings under temporal flexibilities.
In Parallel & Distributed Processing (IPDPS), 2014 IEEE 28th International Symposium on.
IEEE, 2014.

[16] S. Shi.
A Proposal for A Scalable Internet Multicast Architecture.
Technical Report WUCS-01-03, Washington University, 2001.

[17] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang.
Proteus: a topology malleable data center network.
In Proc. 9th ACM HotNets, 2010.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 79

Backup Decomposition Example

Example

Scenario

receiver

Steiner

sender

site

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 80

Backup Decomposition Example

Example

Extended Graph

o−r

o−S o+

receiver

Steiner

sender

site

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 80

Backup Decomposition Example

Example

Solution

o−r

o−S o+

1 1 1

11

1

1 1

1

1

1

3

receiver

Steiner

sender

site

activated

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 80

Backup Decomposition Example

Decomposition Example I

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 81

Backup Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 81

Backup Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 81

Backup Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 81

Backup Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 81

Backup Decomposition Example

Redirecting Flow

o−r

o−S o+

t1

vr

s

W

Violation of Connectivity Inequality

f (δ+ER
ext

(W)) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 82

Backup Decomposition Example

Redirecting Flow

Redirection towards o−S is possible!

There exists a path from v towards o−S in W .

Reasoning
1 Flow preservation holds within W .
2 s could reach o−r via v before the reduction of flow.
3 v receives at least one unit of flow.
4 Flow leaving v must eventually terminate at o−S .

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 83

Backup Decomposition Example

Redirecting Flow

Redirection towards o−S is possible!

There exists a path from v towards o−S in W .

Reasoning
1 Flow preservation holds within W .
2 s could reach o−r via v before the reduction of flow.
3 v receives at least one unit of flow.
4 Flow leaving v must eventually terminate at o−S .

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 83

Backup Decomposition Example

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
,v
,s
〉

t1

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Decomposition Example II

Final Solution

s

〈t1 , v, s〉
t1

t2

t3

〈t2, s〉

〈t3,
s〉

r
〈s, v, r〉

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 84

Backup Decomposition Example

Related Work

Molnar: Constrained Spanning Tree Problems [9]

Shows that optimal solution is a ‘spanning hierarchy’ and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [11]

Consider a weaker variant of multicasting CVSAP without bandwidth
Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [16]

Provided heuristic and showed improvement in scalability.

Matthias Rost (TU Berlin) ‘Formal Virtu’ Project Overview TU Berlin, February 2014 85

	VNetEMC
	VNetEMC
	Idea
	Model Types

	Virtualized In-Network Processing
	Introductory Example
	Definition of CVSAP
	Applications

	Algorithms for CVSAP
	Solution Approach

	Computational Complexity
	Variants
	Approximation for Variants

	Algorithms for CVSAP
	VirtuCast
	VirtuCast
	VirtuCast: IP Formulation
	VirtuCast: Decomposition Algorithm
	VirtuCast Based Heuristics

	Computational Evaluation
	Topologies
	Results

	Conclusion CVSAP
	Future Work
	Summary

	Temporal VNet Embedding Problem
	Overview
	Models for the TVNEP
	Optimization: Dependency Graph User Cuts
	Computational Evaluation

	Appendix
	Backup
	Decomposition Example

